
 
1 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

 

 

 
 

CLI 
(Command Line Interpreter) 

 
 

  



 
2 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Notice 
 
 
This manual is copyrighted by Hubbard Software (“the company”).  It cannot be reproduced in 
total or in part without the express written permission of the company, except for the 
individual use of a person or company with a valid license for the software documented in this 
manual. 
 
This documentation may contain errors or omissions.  It is provided strictly on a “best efforts” 
basis.  The company takes no responsibility for damages that occur due to such inaccuracies.  
The company will attempt to make corrections in a timely fashion after being notified of any 
issues. 
 
 

Trademarks 
 

Microsoft – Is a registered trademark ® of Microsoft Corporation 
Windows - Is a registered trademark ® of Microsoft Corporation 
Oracle – Is a registered trademark ® of Oracle Corporation 
Java – Is a registered trademark ® of Oracle Corporation  



 
3 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Overview 
 
This manual describes the features and use of the Hubbard Software Command Line Interpreter 
(CLI).  The CLI is a form of “Shell” in that it provides a text based command access to the 
features of the underlying Operating System (OS).  The primary differentiator of this CLI over 
other shell type command handlers is that most of the commands are implemented directly in 
the CLI, and it is user extensible (in the paid-for versions).  The CLI is written in Java® and all the 
commands and some other features are dynamically loaded, and driven off property files.  Thus 
it is highly customizable, and can be easily internationalized. 
 
Section 1 Describes the general command line interface. 
 
Section 2 Describes the commands themselves. 
 
Section 3 Describes the Pseudomacros. 
 
Section 4 Describes how to customize the CLI at startup and change various defaults. 
 
Section 5 Describes how to add a command or psuedomacro yourself. 
 

Typography 
 
For the command reference, arguments and other descriptive text may be referenced in italics, 
within square brackets for optional information, or angle brackets for descriptive text. 
 
Examples: 
 
) write [optional text argument(s) to print] 
 
This is not to be confused with literals contained within square brackets, which have a special 
meaning to the CLI as described in Section 1. 
 
And: 
 
<field to use>  - Where the exact details of the field are described further on in the manual. 
  



 
4 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Table of Contents 
Notice .............................................................................................................................................. 2 

Overview ......................................................................................................................................... 3 

Typography ..................................................................................................................................... 3 

Table of Contents ............................................................................................................................ 4 

Section 1 – Using the CLI ................................................................................................................. 8 

Overview ..................................................................................................................................... 8 

Important Note ........................................................................................................................... 8 

Running the CLI ........................................................................................................................... 9 

Basic Concepts .......................................................................................................................... 10 

Section 2 – The Commands........................................................................................................... 23 

Command Line Structure .......................................................................................................... 23 

? – Shortcut for the ‘HELP’ Command ...................................................................................... 24 

BYE – Exiting the CLI .................................................................................................................. 25 

CLASS1 – Set or Display the ‘Class 1’ error handling action ..................................................... 26 

CLASS2 – Set or Display the ‘Class 2’ error handling action ..................................................... 27 

COPY – Copies one or more files to another ............................................................................ 28 

CREATE – Create a file or directory ........................................................................................... 29 

DATE – Display the system date ............................................................................................... 30 

DEBUG – Set or Display the current debug setting................................................................... 31 

DELETE – Delete’s files or directories ....................................................................................... 32 

DIRECTORY – Set or Display the current working directory ..................................................... 33 

EXECUTE – Run an external program ........................................................................................ 34 

FILESTATUS – List files in the file system .................................................................................. 36 

FVAR – Set or Display Floating Point Variables ......................................................................... 42 

HELP – Display various help text about the CLI commands ..................................................... 43 

IVAR – Set or Display Integer Variables .................................................................................... 44 

LEVEL – Display the current environment stack level............................................................... 45 

LISTFILE – Set or display the current CLI output file/destination ............................................. 46 

LOGFILE – Set or display the current CLI logging destination ................................................... 48 

MESSAGE – Display the text associated with message codes .................................................. 49 

MOVE – Move files from one place to another in the file system ........................................... 50 



 
5 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

PATHNAME – Display the resolved full path to a file or directory ........................................... 53 

PID – Display the CLI’s ‘Process ID’ ........................................................................................... 54 

PREFIX – Set or Display the prefix text used in prompting for commands .............................. 55 

PROMPTCOMMANDS – Set or Display the commands to run when prompting for commands.
................................................................................................................................................... 56 

PUSH – Push a level on the environment stack ........................................................................ 57 

POP – Pop a level off the environment stack ........................................................................... 58 

RENAME – Renames a file or directory ..................................................................................... 59 

RETURN – Return from a macro ............................................................................................... 60 

SEARCHLIST – Set or Display the current Searchlist ................................................................. 61 

STRING – Set or Display the value of String Variables .............................................................. 62 

SYSENV – Set/Display System Environment Values .................................................................. 63 

SYSPROP – Display System Property Values ............................................................................. 65 

TIME – Display the current system time ................................................................................... 66 

TRACE – Set or display the ‘Trace Mode’ .................................................................................. 67 

TYPE – Displays the contents of a file ....................................................................................... 68 

VERSION – Display the current version of the CLI .................................................................... 69 

WRITE – Echoes text to the user or list file ............................................................................... 70 

Section 3 – Pseudomacros ............................................................................................................ 71 

!BASENAMEPART – Returns the part of a filename(s) with no extension. .............................. 72 

!CEILING – Returns a number rounded up the next integer. ................................................... 73 

!CLASS1 – Return the current ‘Class 1’ error handling action. ................................................. 74 

!CLASS2 – Return the current ‘Class 2’ error handling action. ................................................. 75 

!CHARACTER – Returns the string made up of characters at the specified Unicode ‘Code 
Points’ ....................................................................................................................................... 76 

!COS – Returns the Cosine of a number. .................................................................................. 77 

!COUNT – Returns the number of arguments passed to it ...................................................... 78 

!DATE – Return the current system date. ................................................................................. 79 

!DEGREES – Converts Radians to Degrees. ............................................................................... 80 

!DIRECTORY – Returns the user’s current working directory. .................................................. 81 

!ELSE – Begins an alternate conditional execution block. ........................................................ 82 

!END – Ends a conditional execution block. ............................................................................. 83 

!EQUAL – Conditional : Test for equality of two strings. .......................................................... 84 



 
6 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!EXPAND – Expand arguments by parsing tokens and delimiters ............................................ 85 

!EXTENSIONPART – Returns the extension part of a filename(s). ............................................ 87 

!FABS – Returns the absolute value of a floating point number. ............................................. 88 

!FADD – Returns the result of adding two floating point numbers. ......................................... 89 

!FDIVIDE – Floating Point division. ............................................................................................ 90 

!FEQUAL – Conditional : Floating Point ‘Equal to’ .................................................................... 91 

!FGE – Conditional : Floating Point ‘Greater than or Equal to’ ................................................. 92 

!FGT – Conditional : Floating Point ‘Greater Than’ ................................................................... 93 

!FILENAMES – Returns a list of files matching conditions ........................................................ 94 

!FLE – Conditional : Floating Point ‘Less than or Equal to’ ....................................................... 95 

!FLOOR – Returns a number rounded down to the next integer. ............................................ 96 

!FLT – Conditional : Floating Point ‘Less Than’ ......................................................................... 97 

!FMULTIPLY – Floating Point Multiplication ............................................................................. 98 

!FNAMEPART – Returns the filename part of a path................................................................ 99 

!FNEQUAL – Conditional : Floating Point ‘Not Equal to’ ......................................................... 100 

!FSUBTRACT – Floating Point Subtraction .............................................................................. 101 

!FVAR – Returns the value of a Floating Point Variable ......................................................... 102 

!IABS – Returns the ‘Absolute Value’ of an integer ................................................................ 103 

!IADD – Integer Addition ......................................................................................................... 104 

!IDIVIDE – Integer Division ...................................................................................................... 105 

!IEQUAL – Conditional : Integer ‘Equal To’ ............................................................................. 106 

!IGE – Conditional : Integer ‘Greater Than or Equal To’ ......................................................... 107 

!IGT – Conditional : Integer ‘Greater Than’ ............................................................................ 108 

!ILE – Conditional : Integer ‘Less Than or Equal To’ ................................................................ 109 

!ILT – Conditional : Integer ‘Less Than’ ................................................................................... 110 

!IMOD – Integer Modulo Function ......................................................................................... 111 

!IMULTIPLY – Integer Multiplication ....................................................................................... 112 

!INEQUAL – Conditional : Integer ‘Not Equal To’ .................................................................... 113 

!ISUBTRACT – Integer Subtraction .......................................................................................... 114 

!INFO – Returns various file information fields for a file or directory .................................... 115 

!IVAR – Returns the value of an Integer Variable ................................................................... 116 

!LASTERRORCODE – Returns the error code for the last command....................................... 117 

!LASTEXCEPTIONTYPE – Returns the exception for the last command. ................................. 118 



 
7 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!LEVEL – Returns the current ‘Environment Stack’ level ........................................................ 119 

!LISTFILE – Returns the value of the LISTFILE Environment Setting ....................................... 120 

!LOGFILE – Return the current CLI logging destination .......................................................... 121 

!LOGN – Returns the ‘Natural Log’ of a Floating Point number. ............................................ 122 

!LOG10 – Returns the ‘ Log Base 10’ of a Floating Point number. ......................................... 123 

!MESSAGE – Returns the text for a message key ................................................................... 124 

!NEQUAL – Conditional : String ‘Not Equal To’ ....................................................................... 125 

!PARENTPART – Returns the parent part of a pathname. ...................................................... 126 

!PATHNAME – Returns the resolved full path to a file or directory ....................................... 127 

!PI – Returns the constant value for Pi (π) .............................................................................. 128 

!PID – Return the CLI’s ‘Process ID’......................................................................................... 129 

!RANDOM – Returns a random number x where: 0.0 <= x < 1.0............................................ 130 

!READ – Prompt the user and read input ............................................................................... 131 

!ROOTPART – Returns the filesystem root part of a pathname. ............................................ 132 

!ROUND – Rounds a Floating Point number to the nearest integer ...................................... 133 

!SEARCHLIST – Returns the current value of the SEARCHLIST ................................................ 134 

!SEQUAL – Conditional : Alternate form of !EQUAL ............................................................... 135 

!SGE – Conditional : String ‘Greater Than or Equal To’ .......................................................... 136 

!SGT – Conditional : String ‘Greater Than’ .............................................................................. 137 

!SIN – Return the Sine function of a Floating Point number .................................................. 138 

!SLE – Conditional : String ‘Less Than or Equal To’ ................................................................. 139 

!SLT – Conditional : String ‘Less Than’ .................................................................................... 140 

!SNEQUAL – Conditional : Alternate form of [!NEQUAL] ....................................................... 141 

!STRING – Returns a String variable or length.  With optional functions. .............................. 142 

!SYSENV – Return System Environment Values ...................................................................... 144 

!SYSPROP – Return System Property Values .......................................................................... 145 

!TAN – Return the Tangent function of a Floating Point number .......................................... 146 

!TIME – Return the current system Time of day .................................................................... 147 

!VERSION – Returns the current version of the CLI ................................................................ 148 

Section 4 – Startup Customization.......................................................................................... 149 

Section 5 – Advanced Customization ...................................................................................... 152 

Index ............................................................................................................................................ 153 

  



 
8 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Section 1 – Using the CLI 
 

Overview 
 
The CLI is, as its name implies, a “Command Line Interpreter.  It is a text based interface where 
you enter commands at a prompt, and get text results back.  On many operating systems this is 
sometimes called a “Shell”.  These commands are intended to give you control of Operating 
System functions, such as running other programs, listing and manipulating disk files, and the 
like.  “CLI” is a generic term for these kinds of programs that provide text based access to an 
Operating System.  Many vendors have some version of a CLI, which may provide similar 
functions, but with a different syntax than you see in this program. 
 
The Hubbard Software CLI is unique in that it is extensible and customizable by the user (In the 
advanced versions).  You can even write your own commands if you are proficient in the Java 
language.  It also has a number of powerful features not typically found in other shell programs, 
such as inline functions (called Pseudomacros) and advanced built-in capabilities where other 
shells require external programs to do things like string manipulation, math, and advanced file 
operations. 
 

Important Note 
 
The CLI is very customizable.  The manual here will use the default settings for all examples.  Be 
aware that in the advanced versions, it is possible to change virtually all the text you see, or 
enter.  You can even change the command names themselves. 
  



 
9 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

 

Running the CLI 
 
The CLI is a program written in the Java programming language.  As such, it is shipped as a “Java 
Archive” or “JAR” file.  Specifically it is an “Executable JAR file”.  Java is very portable, and thus 
the CLI should run on almost any computer, running almost any Operating System (OS), as long 
as Java runtime support is installed.  You can start the CLI in any way that your OS would 
normally start the Java runtime.  For example, on a Microsoft® Windows® OS, you could start it 
from the ‘DOS Command Prompt’ (cmd.exe) with something like this: 
 
C:\Users\Dave> java –jar CLI.jar 

 
Where ‘java’ is the name of the java runtime, ‘-jar’ is a switch to the runtime saying you want to 
run an executable jar file, and ‘CLI.jar’ is the name of the CLI itself.  It is beyond the scope of this 
manual to list all the possible ways of starting the CLI.  But one suggestion would be to create a 
‘Shortcut’ that runs it directly by clicking on an icon on your desktop. 
 
It is possible to pass further switches to the CLI itself.  See Section 4 on how to customize the 
CLI’s startup behavior this way. 
 
You can also specify a filename at startup which is treated like a “CLI Macro” and is immediately 
run by the CLI when it starts.  A Macro is a file that contains one or more commands you want 
executed in a group.  Much like the Windows/DOS  .BAT (Batch) files.  More on Macros below. 
 

  



 
10 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Basic Concepts 
 
The CLI gives you a default prompt for input which is a single closed parenthesis followed by a 
space.  As an example, we will use the simple ‘WRITE’ command, which merely echoes back the 
text you pass it as an argument. 
 
) write Hello World! 
Hello World! 
 
Note in our examples, we will use the BOLD font for the output from the CLI, and regular text 
for input you enter. 
 

Text Entry 
 
The CLI accepts text in plain form or within double quotes.  You might use double quotes if you 
don’t want the CLI to interpret special characters such as a semicolon ‘;’.  NOTE: In double 
quotes, a slash character, either ‘/’ or ‘\’, is an ESCAPE character.  On your operating system it 
will be the reverse of the one used in directory paths, so that you are not ‘escaping’ characters 
all the time if you cut and paste paths.  The escape character tells the parser to just accept the 
next character as is.  Like if you actually want a double quote to be in the string.  If you want to 
actually have the escape character, just use two of them, like ‘//’ or ‘\\’. 
 

Comments 
 
Any line starting with an exclamation point ‘!’ is treated as a comment line and is ignored.  This 
is particularly useful in ‘macros’.  See below. 
 

Arguments 
 
Commands and Pseudomacros (see below) may accept arguments.  Arguments are separated 
by either spaces, tabs, or commas.  In the above “Hello World” example, there are two 
arguments to the ‘write’ command:  ‘Hello’ and ‘World!’ .  There are also delimiters saved in 
between them. 
 
Note that various commands and pseudomacros may take numeric values.  All arguments are in 
fact simply text strings, so any numeric text is simply converted as needed.  This makes the CLI 
‘loosely typed’. 
 
  



 
11 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Prompt and Prefix 
 
When you are prompted for text entry, you are actually seeing two things: 
 

 Optional ‘Prompt’ values 
The ‘Prompt’ is not enabled by default.  However it is simply a list of commands with no 
arguments, whose output you will see.  A useful example would be the TIME command 
for example, where the time would be displayed on the line before the prefix.  This can 
be set by the use using the ‘PROMPT’ command.  See its description later in the manual. 
 

 A ‘Prefix’ 
This is the closed Parenthesis and a space by default.  But can be changed.  See the 
description of the ‘PREFIX’ command later in the manual. 
 

Minimal Uniqueness and Case Sensitivity 
 
All commands, switches passed to them, and many values for switches, can be abbreviated.  
They can be shortened to the point that they can be distinguished from some other command 
or switch.  So the previous example could simply have been: 
 
) w Hello World! 
Hello World! 
 
Because the ‘w’ is actually minimally unique.  No other command starts with a ‘w’. 
 
Also, all commands and switches are case-insensitive.  So you could also have done this: 
 
) WriTe Hello World! 
Hello World! 
 
If you really felt like it. 
 
  



 
12 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Switches 
 
Many commands allow ‘switches’ which modify their behavior in some way.  Virtually all 
commands accept the /list= switch, which redirects the output of the command to a file, just 
for the one command.  A switch looks like this: 
 
) write/list=test.txt Hello World! 
 
The output would now appear in a file named ‘test.txt’ in your working folder. 
 
As mentioned, switches can be minimally unique and are case-insensitive, so the following 
would work: 
 
) write/L=test.txt Hello World! 
 
Some switches require values after an ‘=’, like the above, but some do not.  It depends on their 
function. 
 
The common switches across all commands are: 
 
/list= - Redirect output to a file for the one command. 
/1= - Set the error action for Class1 exceptions for just the one command.  See section on error 
handling below. 
/2= - Set the error action for Class2 exceptions for just the one command.  See section on error 
handling below. 
 
 
  



 
13 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Pseudomacros and File Expansion 
 
A ‘Pseudomacro’ is a built in function that can be used anywhere in a command line, and are 
expanded to a value before the command is executed.  There are a variety of them that can do 
useful things.  Section 3 details all of them.  But briefly, as an example: 
 
) write It is now [!time] on [!date] 
It is now 16:56:17 on 08/30/15 
 
You can see how the current time and date are displayed.  All Pseudomacros start with ‘[!’ and 
end with ‘]’.  They can also be nested to any depth if it makes sense.  The Pseudomacro is run 
before the command is, as part of the command line expansion, and the resulting text is 
inserted as if typed in the command line. 
 
There is a very special class of Pseudomacros, which allow programmatic control flow.  These 
provide an IF/THEN/ELSE like structure, and are given their own subsection later in this section. 
 
‘File Expansion’ is a notation where you can put a filename in square brackets and the CLI will 
expand the contents of the file into your command line.  Note that it will only expand the first 
line of the file, although if the line ends with an ampersand ‘&’ character, it signals a 
continuation line will follow, and the following line will be appended to the first, for as many 
lines as you want until some line does not end in an ampersand. 
 
Example: 
 
A file named ‘myfile.txt’ has one line with the text “Hello World” in it. 
 
) write My message is: [myfile.txt] 
My message is: Hello World 
 
  



 
14 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

User Environment 
 
The CLI maintains a number of environmental settings, most of which the user can change.  The 
classic example is your current working directory, sometimes called a ‘cwd’ for short.  In the CLI 
it is simply called ‘DIRECTORY’.  There are commands and Pseudomacros to allow you to set, 
display, and use these values.  Specifically, they are (See commands and Pseudomacros of the 
same names): 
 

 PROMPT – The commands to be run with each user prompt. 

 PREFIX – The text right before the user’s text entry spot.  Default ‘) ‘. 

 DIRECTORY – Current working directory for file operations. 

 SEARCHLIST – List of directories that are searched for files. Like a ‘path’, but more 
generic.  For example, the ‘TYPE’ command will look in the current directory for the file, 
and if not found there, will look in all the searchlist directories to find it. 

 STRING – A variable that stores text values.  These can be named, providing an unlimited 
number of them. 

 IVAR – A variable that stores integer values.  Values are signed 64 bit values.  These can 
be named, providing an unlimited number of them. 

 FVAR – A variable that stores floating point values.  IEEE ‘Double’ values.  These can be 
named, providing an unlimited number of them. 

 CLASS1 – The current error handling action for Class 1 errors.  See below for more detail 
on structured error handling. 

 CLASS2 – The current error handling action for Class 2 errors. 

 LISTFILE – The current output file for CLI output. ‘System.out’ and ‘stdout’ are 
synonymous and are the default, which is your console usually. 

 LOGFILE – The current file where all CLI activity is being logged.  Usually disabled. 

 SYSENV – The System Environment set of values.  See the SYSENV command. 
 

The Environment Stack 
 
All the above environment settings are stored on a ‘Stack’.  There is a ‘PUSH’ command to allow 
you to add another level to the stack, and a ‘POP’ to return to a previous level.  The ‘top’ of the 
stack is the current working set of these.  However a few commands allow you (through a 
switch) to access the previous level setting.  This allows you to make temporary changes, and 
then ‘pop’ back to the previous settings.  When you ‘push’ a level, all of these are copied to the 
new level.  When you ‘pop’, the previous level values are restored.  See the ‘PUSH’ and ‘POP’ 
commands for details. 
 
  



 
15 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Error Handling 
 
There are two ‘exception severities’ which can occur.  They are known as ‘Class 1’ and ‘Class 2’ 
exceptions.  Basically, Class 1 errors are those for which the command or other operation 
cannot realistically continue.  Class 2 is more like a warning, and the function may try and 
continue.  These are different from the ‘error code’ which is returned.  Any error causes an 
‘exception’ of one of the two classes.  And for any given error code (A numeric value printed 
with the error message), the exception severity may differ from command to command.  So for 
example, a ‘File does not exist’ (Error code 10035) may be a serious error in one command, but 
not in another. 
 
For each exception severity there is an action level that the CLI will take.  These actions are: 
 
ABORT – Exit the CLI program.  The CLI exits to the OS returning the error code that triggered 
the event. 
ERROR – Print an error message and abort the command, and also abort a macro if the 
command is in a macro.  Also aborts subsequent commands on the same command line. 
WARNING – Print a warning message and try and continue as best it can.  Possibly with some 
default. 
IGNORE – Suppress any message to the user and just continue if possible. 
 
The default values for the classes are: 
 
Class 1 – ERROR 
Class 2 – WARNING 
 
There can be a couple of very serious internal errors which might abort the CLI, but there is no 
way the CLI could continue operating in these cases.  An ABORT is unconditional in those, such 
as might be caused by a hardware failure. 
 
There may be cases where you want to try and override the behavior of the CLI when one of 
these occurs.  Like continuing an operation even if a file does not exist for some reason. 
 
You can set/display these with the ‘CLASS1’ and ‘CLASS2’ commands and Pseudomacros. 
 
Also, all commands accept a /1= and /2= switch which lets you set the action just for the 
duration of the command.  So for example, if you don’t want a macro to abort if you are just 
making sure that a temp file has been cleaned up, but it might not exist, you could do: 
 
) delete/1=ignore temp_work_file.dat 
 
And if the file isn’t there, no big deal. 
 



 
16 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Special Command Shortcuts – Angle brackets and Parentheses 
 
A powerful feature of the CLI is use of argument repetition groups in angle brackets, and 
command repetition groups in parentheses. 
 

Angle Brackets: 
 
A list of text items within angle brackets is expanded by concatenating each item to any 
adjacent text, and expanding it into individual items on the command line before it executes.  
These can be nested to any depth. 
 
Best to have an example.  Using the ‘TYPE’ command that simply displays a file: 
 
) type data.txt 
LINE 1 of the file 
LINE 2 of the file 
LINE 3 of the file 
 
Simple enough.  But if you wanted to type a couple of files with similar names, say purchase 
order data (in PO_data.txt) and invoice data (in INV_data.txt): 
 
) type <PO INV>_data.txt 
LINE 1 of the PO file 
LINE 2 of the PO file 
LINE 3 of the PO file 
LINE 1 of the INV file 
LINE 2 of the INV file 
 
You see that both a PO_data.txt and INV_data.txt file were displayed.  You can use this in any 
command, so you could delete both files for example.  Or move them. 
 
This notation can be nested, and you can include Pseudomacros in it which will be expanded 
first. 
 
If you have more than one group, the CLI iterates through the left most group the slowest, and 
the right most the fastest.  Best with an example: 
 
) write <a b c>_<x y> 
a_x a_y b_x b_y c_x c_y 
 
Note ‘a’ is glued to ‘x’ and ‘y’ with the underscore (or whatever text) in between, then ‘b’ is 
handled the same, then ‘c’.  Try it.  Try 3 or 4 groups. 
 



 
17 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Parentheses 
 
Text within parentheses cause the command to be repeated.  There is also a special case where 
you can start the command line with a list of commands within parentheses, and each 
command will run against the same set of arguments.  So a multiple command example: 
 
) (delete create) myfile.dat 
 
The above will delete ‘myfile.dat’ if it exists, and then create a new, empty, file of the same 
name, in the current working directory. 
 
A simple example without concatenation: 
  
) wr A (1 2) B 
A 1 B 
A 2 B 
 
Note how the command repeated for each value in the parentheses. 
 
An Example with multiple arguments, contained within parentheses: 
 
) write (a b c)_(x y) 
a_x 
b_y 
c_ 
 
Note how the command is actually repeated, unlike the angle brackets where arguments are 
expanded. 
 
Also note how the arguments are used.  The CLI tries to combine the first element in each left 
group to the corresponding element in the right group, until the right group runs out, in which 
case it continues with just nothing appended. 
 
When combined with angle brackets, Pseudomacros (like String variables), and the like, this 
notation becomes very powerful. 
 
  



 
18 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Macros 
 
A macro is simply a file containing CLI commands.  It is a powerful way to implement useful 
operations in a group.  So it’s kind of liking writing your own command, or CLI subroutine. 
 
Macro execution: 
 
When you type in a ‘command’ at the prompt, the CLI first tries to run a built in CLI command 
that matches it.  However, if no command matches the text you type in, the CLI will attempt to 
find a file by that name and run commands in it. 
 
The CLI will first look in your current working directory.  If it is not found, it will look in the 
directories on your Searchlist (See SEARCHLIST command). 
 
If it is still not found, it will look for a file with your text and “.cli” appended.  It is good practice, 
but not required, that you name your macros <my name>.cli . 
 
The CLI then runs the commands in the macro, although you will note that the CLI does not 
echo the commands themselves (unless you turn on ‘trace mode’, see the TRACE command), 
nor do you get prompts for each command.  You only get the output. 
 
See also the RETURN command that returns from a macro. 
 
Note that there is no problem with a macro calling another macro, to any depth you want. 
 
Macro Arguments: 
 
Just like with a command, you can provide arguments to your macro, and access them from 
inside it.  The notation is to surround the reference with percent signs.  The legal references 
are: 
 
%num% : The number of arguments.  Includes the 0th (see below). 
%n% : The nth argument. 
%m-n,i%  : Every ith arg from m to n. 
%-n,i%  : Every ith arg from 0 to n. 
%m-,i%  : Every ith arg from m to the last. 
%-,i%  : Every ith arg from all the args. 
%m-n%  : All args from m to n. 
%-n%  : All args from 0 to the nth. 
%m-%  : All args from m to the end. 
%-%  : All arguments. 
 
Note that ‘Argument 0’ is the macro name itself.  The real arguments start at 1. 



 
19 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Macro Example: 
 
Say you have a file named ‘mymacro.cli’ in your working directory that has the following 3 lines 
in it: 
 
write Number of args passed is %num% 
write Argument 1 is %1% 
write Arguments 2 through 4 are %2-4% 
 
You can call it as follows: 
 
) mymacro A B C D 
Number of args passed is 5 
Argument 1 is A 
Arguments 2 through 4 are B C D 
 
You will get an error if you try and reference a non-existent argument. 
 
 
 
  



 
20 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Conditional Execution – Real Power! 
 
You can control both the expansion of your command line, and the execution of commands 
using some special ‘pseudomacros’.  These are actually built-in control structures. 
 
There are 3 special cases of these: 
 

 Test Pseudomacros – Like [!equal a b] 

 The [!else] pseudomacro – Just like in regular programming. 

 The [!end] pseudomacro – Ends a conditional block. 
 
Test Pseudomacros: 
 
There are many of these available, but they basically boil down to tests against 3 types of data, 
and for each type, the usual set of comparisons.  The name of the pseudomacro you want is a 
single character representing the data type (see below), followed by the name of the operator.  
These, as with all other pseudomacros, can be minimally unique. 
 
Note: All String type test pseudomacros support the /ignorecase switch for case insensitivity. 
 
Types: 
 
String – Start with ‘s’ 
Integer – Start with ‘i’ 
Floating Point – Start with ‘f’ 
 
Comparisons:  
 
Equal – ‘equal’ (or minimally unique can be ‘eq’) 
Not Equal – ‘nequal’ (or minimally unique can be ‘ne’) 
Greater Than – ‘gt’ 
Greater Than or Equal – ‘ge’ 
Less Than – ‘lt’ 
Less Than or Equal – ‘le’ 
 
Because comparing two strings is the most common there are two shortcuts where you don’t 
need the data type prefix.: [!equal]  is the same as [!sequal] , and [!nequal]  is the same as 
[!snequal] .  All other comparisons require the data type. 
 
Note that the reason for the numeric tests are so that, as an example with Integers, ‘00001’ is 
equal to ‘1’ as an Integer comparison [!ieq], but not as a String comparison [!eq] or [!seq]. 
 
  



 
21 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Block Pseudomacros 
 
After the test, you are in a conditional block of the command line or commands.  You end the 
block with [!end].  You can also have an ‘else’ case with [!else]. 
 
Example within a command line: 
 
) write A and B are [!equal A B]Equal[!else]Not Equal[!end] 
A and B are Not Equal 
 
Now of course this example doesn’t make much sense, but combine it with macro arguments 
and you can do interesting things!  Like :  
 
write %1% and %2% are [!equal %1% %2%]Equal[!else]Not Equal[!end] 
 
Example with multiple lines: 
 
You can execute, or not, whole groups of lines, which is very powerful in macros.  You can have 
a macro with the following lines: 
 
[!igt %1% %2%] 
Write %1% is Greater than %2% 
[!else] 
Write %1% must be less than or equal to %2% 
[!end] 
 
The [!igt] here means ‘Integer Greater Than’. 
 
Note you do not need the [!else] block if you don’t want it. 
 
  



 
22 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Special note: 
 
If you do not close a control structure, like forget the [!end], the CLI returns to the prompt with 
a special prefix to let you know it is still in a control block. 
 
If you are in a non-executing section, your prefix will have a ‘\’ before it.  If you are in an 
executing section, it will have a ‘!’ before it.  See the following example: 
 
) [!equal a b] 
\) wr hello 
\) [!else] 
!) wr bye 
bye 
!) [!end] 
) 
 
You see that since ‘a’ does not equal ‘b’, the ‘\)’ prefix means that the commands you enter just 
get ‘eaten’ and not executes, but after you type in [!else], you are now in an executing block 
with ‘!)’, until you end the block with [!end].  This will occur if you don’t end a macro too, when 
you return to the command prompt it will look like one of these to tip you off. 

  



 
23 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Section 2 – The Commands 
 
This section will describe each of the commands available to the user.  Refer to Section 1 for 
details on the command line structure and some core features and limitations available through 
some of the commands. 
 

Command Line Structure 
 
A command line may contain one or more commands, separated by a ‘command separator’.  By 
default this is the semicolon ‘;’ however this is a customizable character.  See Section 4 on how 
to customize this. 
 
A simple command is the ‘WRITE’ command.  It merely echoes the text it is given.  An example 
of a command line would be: 
 
) write Hello World! 
 
Note that the parenthesis ‘)’ is the prefix used to prompt the user, as described in more detail 
in Section 1. 
 
Another example might be: 
 
) wr Hi There!;wr More Greetings! 
 
Here, we used minimal uniqueness for the ‘write’ command, abbreviating it to just ‘wr’, and 
also have two commands on the line.  Both will execute. 
 
IMPORTANT NOTE: If a command on a multi command line has a serious error (Class 1), the 
subsequent commands will not execute. 
 
 
The rest of this section is a reference for each command, an alphabetical order. 
 
NOTE ON SWITCHES: Virtually all commands will honor the /list=, /1=, and /2= switches as 
described in Section 1.  They are therefore not repeated for each command below. 
  



 
24 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

? – Shortcut for the ‘HELP’ Command 
 
The ‘?’ is merely a shortcut for the HELP command.  See the HELP command for more 
information. 
  



 
25 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

BYE – Exiting the CLI 
 
This exits the Command Line Interpreter. 
 

Operation 
 
This simply exits the CLI program, and returns an integer error code to the underlying Operating 
System.  The default is a code of zero.  Or you can specify a value to be returned. 
 
NOTE: This operation is unconditional.  It will exit, even if you pass an illegal integer value, in 
which case the value returned to the OS is undefined, but will be greater than zero. 
 

Argument 
 
One optional integer exit code to be returned to the Operating System.  If none, zero is 
returned. 
 

Examples 
 
) bye 1 
 
) bye 
 
 
 
 
  



 
26 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

CLASS1 – Set or Display the ‘Class 1’ error handling action 
 
As discussed in Section 1, exceptions have two possible severities, a Class 1, or Class 2.  You can 
override the default treatment of Class 1 exceptions with this command. 
 

Argument 
 
None – If no argument is present, this reports the current handling. 
 
The other possible argument values are (minimal uniqueness allowed): 
 
Ignore – Do not report any Class 1 exceptions, and try and proceed with command processing 

as best as possible.  Not recommended unless you really are expecting an error and 
don’t care. 

Warning – Report a ‘Warning’ message and try and continue as best as possible. 
Error – Report an ‘Error’ message, abort the current processing.  This will also break out of a 

macro.  It will also stop executing the current command as well as any others on the 
same command line.  This is the default for Class 1 exceptions. 

Abort – Report an ‘Abort’ message and exit the CLI.  The CLI will exit with a non-zero error code. 
 

Example 
 
) write [!string xyz] 
Error (10024) : Pseudomacro does not accept arguments. 
) class1 ignore 
) write [!string xyz] 
 
)  
 
Note that the [!string] pseudomacro does not accept an argument in this mode of operation, 
and thus returns an error, indicating a ‘Class 1’ exception.  After setting class 1 to ‘ignore’ you 
get no message, and the write command attempted to continue, with a blank string.  



 
27 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

CLASS2 – Set or Display the ‘Class 2’ error handling action 
 
As discussed in Section 1, exceptions have two possible severities, a Class 1, or Class 2.  You can 
override the default treatment of Class 2 exceptions with this command. 
 

Argument 
 
None – If no argument is present, this reports the current handling. 
 
The other possible argument values are (minimal uniqueness allowed): 
 
Ignore – Do not report any Class 2 exceptions, and try and proceed with command processing 

as best as possible. 
Warning – Report a ‘Warning’ message and try and continue as best as possible.  This is the 

default setting. 
Error – Report an ‘Error’ message, abort the current processing.  This will also break out of a 

macro.  It will also stop executing the current command as well as any others on the 
same command line. 

Abort – Report an ‘Abort’ message and exit the CLI.  The CLI will exit with a non-zero error code. 
 
 

Example 
 
) type junk.txt 
Warning (10035) : File '.\junk.txt' does not exist. 
) class2 ignore 
) type junk.txt 
) 
 
Note that the ‘type’ command returns a warning by default if the file does not exist, indicating a 
‘Class 2’ exception.  Setting it to ‘ignore’ causes no message the second time.  



 
28 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

COPY – Copies one or more files to another 
 
Copies one or more source files to another destination file, optionally appending them to an 
existing file. 
 

Arguments 
 
At least two. 
 
First Argument – The destination file.  It can exist or not in the current working directory.  The 

SEARCHLIST is not searched for the file to see if it exists.  See switches. 
 
Subsequent arguments – Source files or templates.  The SEARCHLIST is not searched for the file. 
 

Switches 
 
/delete – Will delete the destination file if it exists.  No error if it does not exist. 
/append – Will append to an existing file.  No effect if it did not exist. 
/verbose – Will cause detailed reporting of the files copied to the destination. 
/exclude= - Specifies a list of file templates to exclude from the operation.  Accepts more than 
one if you put them in double quotes and separate them with the ‘path separator’ (Like ‘;’ in 
Windows or ‘:’ in Unix). Matches the filename only. 
 

Operation 
 
If the destination file does not exist, it will be created with as many of the attributes of the first 
source file as possible.  Thus, if you only have one source file, this will make a true copy of it. 
 
Subsequent files are always appended to the destination after the first one.  Thus, the /append 
file only applies to the first source file copied. 
 
You can use any template for the source file(s) that you could use in the FILESTATUS command. 
 

Example 
 
) copy allsource.txt *.java 
) copy allsource.txt *.java 
Error (10059) : File 'allsource.txt' already exists. 
) copy/del allsource.txt *.java 
) copy/app allsource.txt  ..\Converter.java 
) copy/exclude=*.bak allsource.txt *.* 
 
 



 
29 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

CREATE – Create a file or directory 
 
Use this command to create new files or directories.  For a file, there is an option to enter text 
into it. 
 

Arguments 
 
A list of one or more names to be created.  These can be relative to the current working 
directory, or absolute paths to other directories. 
 
The file or directory named cannot already exist. 
 
Note: If you are creating a directory, any missing directories in the path will also be created.  So 
you can create a whole sub-directory structure in one shot. 
 

Switches 
 
/directory – Tells the command that a directory is to be created instead of a file. 
/input – For a file, the user will be prompted with a ‘)) ’  for input to put into the file.  You end 

your input with a single ‘)’ on a line. 
 
An error will be reported if you try and use both switches, as you cannot put data in a ‘directory 
file’ itself. 
 
 

Examples 
 
) cre foo.txt 
) cre/inp foo2.txt 
)) Some text I want in the file. 
)) Another line of text. 
))) 
) type foo2.txt 
Some text I want in the file. 
Another line of text. 
)   



 
30 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

DATE – Display the system date 
 
Display the current system date using either the default format, or using one you provide via a 
switch. 
 

Arguments 
 
None. 
 

Switches 
 
/format = Specifies a format to use for displaying the date.  This format must be in the same 

format as the Java java.text.SimpleDateFormat class definition.  This overrides the CLI 
default format.  See Section 4 on customization for a way to change the default date 
format. 

/tz= Specifies a timezone ID to use.  Must be from the set displayed using the TIME command’s 
/showalltimezones switch and is case sensitive.  May also be from any timezone aliases 
specified in the resource property file. 

 
Note: You may also include time fields in your format. 
 
Examples  
 
Note minimal uniqueness of switch in one of the examples. 
 
) date 
09/05/15 
) date/format=yyyy-MM-dd 
2015-09-05 
) date/f=yyy-MM-dd:HH:mm:ss 
2015-09-05:21:33:25 
) 
 
See also the [!date] pseudomacro which works much the same way.  



 
31 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

DEBUG – Set or Display the current debug setting 
 
This command is reserved for developers working on the CLI program, and is not guaranteed to 
do anything specific. 
 
Currently it will display the setting if no argument is passed in, or accepts ‘on’ or ‘off’. 
 
The behavior of the CLI if this is turned ‘on’ may vary.  It may produce additional tracing or error 
detail for example. 

  



 
32 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

DELETE – Delete’s files or directories 
 
This command will delete files or directories.  It has options to print the name before deletion, 
and can also prompt the user for every file in the event a template is used.  It can also recurse 
through directories, deleting all files in a directory tree. 
 

Arguments 
 
One or more names of files or directories, or file templates such as ‘*.bak’ . 
 

Switches 
 
/confirm – Causes the CLI to ask for confirmation before deleting each file or directory.  The 

positive answer is ‘y’ or ‘yes’.  Anything else is a negative answer. 
/verbose – The CLI will print a line with the name of each file or directory before attempting to 

delete it. 
/recurse – For directories, this will recursively empty a directory structure under a directory 

before deleting the directory itself. 
/exclude= - Specifies a list of file templates to exclude from the operation.  Accepts more than 

one if you put them in double quotes and separate them with the ‘path separator’ (Like 
‘;’ in Windows or ‘:’ in Unix). Matches the filename only. 

 
Note: If a directory is not empty, you will get an error unless you used the /recurse switch. 
 
Examples 
 
) del foo.txt 
) del/verb foo2.txt 
Deleting File: C:\Users\Marvin\Documents\Dev\workspace\CLI\foo2.txt 
) del/v foo2.txt 
Deleting File: C:\Users\Dave_2\Documents\Dev\workspace\CLI\foo2.txt 
Error (10035) : File 'foo2.txt' does not exist. 
) del/confirm foo3.txt 
Delete 'C:\Users\Dave_2\Documents\Dev\Test\foo3.txt' ? y 
) del/excl=”*.java;*.c” * 
 
As with all commands, all the switches can be minimally unique.   So ‘/c’ will work for 
‘/confirm’, etc… 
 
Note the /exclude example will delete all files in the folder except files ending in .java or .c .  



 
33 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

DIRECTORY – Set or Display the current working directory 
 
Change your working directory, or just display it. 
Also see the CD command which is a synonym for this command. 
 

Argument 
 
Zero or one argument.  With no argument, the command displays the current working 
directory.  With an argument, it changes the working directory to the one specified by the 
argument. 
 
Note: You can use ‘relative’ motion from the current directory.  So for example, you can use the 
common ‘..’ notation to move up a directory level, to the parent of the current working 
directory.  You can use this in any combination, such as ‘..\..\test’.  Or just the name of a folder 
or path under your current directory, such as ‘testfiles’ or ‘testfiles\reports’.  Or you can specify 
an ‘absolute’ path from your root, such as (in Windows) ‘c:\users\arthur\documents\dev’. 
 

Switches 
 
/initial – Display the value it was when the CLI initially started up. 
/previous – Display the value of the previous environment stack level.  Will cause an error if 

there has not been a ‘push’ command to cause there to be a ‘previous’ level. 
 
Note: You will get an error if you try and use both switches together, or with an argument. 
 
Use Note: If you want to change to the ‘initial’ or ‘previous’ directory, use the Pseudomacro 

form of this command as an argument.  For example, to change to the initial directory, 
do this: 

 
  ) dir [!dir/i] 
 

  



 
34 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

EXECUTE – Run an external program 
 
This command allows you to run other programs from the CLI, and optionally redirect their 
input, output, and error streams. 
 
Note: This is synonymous with the XEQ command, which is a shortcut as “X” is minimally 
unique for it. 
 

Arguments 
 
The first argument is the program name.  Depending on the Operating System, you may be able 
to omit the file extension.  For example, in Windows, you can omit the “.exe” extension. 
 
All other arguments are passed to the program. 
 
By default, regular console output and error output go to your console.  However you can 
redirect those using switches.  The same is true for the program’s standard input it might read 
on. 
 

Switches 
 
/string and /string= - Causes the return value of the program, usually an integer on most 

Operating Systems, to be stored in a String variable for your use.  With no value 
(/string), it goes in the current default String (with no name).  With a value 
(/string=<name>) it goes in the named String variable. 

 
/output= - Redirects the program’s stdout to the file name you specify.  If the file does not exist, 

it will be created.  If it does exist, it will be re-created (deleted and created). 
 
/error= - Redirects the program’s stderr to the file name you specify.  If the file does not exist, it 

will be created.  If it does exist, it will be re-created (deleted and created). 
 
/input= - Redirects the program’s stdin to the file name you specify.  If the file does not exist, it 

will be created.  If it does exist, it will be re-created (deleted and created). 
 
  



 
35 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Examples 
 
) execute java myjavaprog 
) execute/string java myjavaprog 
) string 
0 
) exec/str/out=myjavaprog.out java myjavaprog 
) type myjavaprog.out 
My Java Test Program: Hello World! 
) string 
0 
)  



 
36 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

 

FILESTATUS – List files in the file system 
 
Lists files in the underlying file system, allowing various filters. 
 

Syntax: 
 
) filestatus[optional switches] [optional file/path template(s)] 
 

Operation: 
 
The command lists files according to the switches and arguments, if any.  It is limited by the 
underlying Operating System, so some fields of data about a file may not apply in all cases.  
Also, the ‘template characters’ which are used as ‘wildcards’ to match text may not be the 
same as that of some other shell you may be used to.  See below for more detail. 
 
Default behavior: 
 
If there are no switches or arguments passed to the command, it will show a file listing of the 
current working directory.  (See the ‘DIRECTORY’ command).  It will also display a fairly 
complete set of file information.  The specific fields are described below. 
 

Switches: 
 
tlmeq= 
tlmgt= 
tlmge= 
tlmlt= 
tlmle= 
tlaeq= 
 

tlagt= 
tlage= 
tlalt= 
tlale= 
tcrgt= 
tcreq= 

tcrge= 
tcrlt= 
tcrle= 
sizeeq= 
sizegt= 
sizege= 
 

sizelt= 
sizele= 
sort= 
hidden 
noheader 
fields= 
 

Also: 
/exclude= - Specifies a list of file templates to exclude from the operation.  Accepts more than 

one if you put them in double quotes and separate them with the ‘path separator’ (Like 
‘;’ in Windows or ‘:’ in Unix). Matches the filename only. 

 
 
  



 
37 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

This command has one of the most sophisticated set of switches of any command.  Therefore 
we will break them out into the major functional groups here.  There are a few primary groups: 
 

 The ‘/hidden’ switch for seeing Hidden files 

 Date/time and Size filters 

 The ‘/sort=’ switch for sorting your output 

 Formatting control: The ‘/fields=’ switch 
 

The Hidden File Filter - /hidden switch 
 
Normally files which the operating system has marked as ‘hidden’ do not show up on the listing.  
If you want to see these, use the ‘/hidden’ switch. 
 

Date/Time and Size Range Filters 
 
You can filter the list of files based on ranges of date/time or size fields.  For example you can 
list just files modified before last month, or larger than some number of bytes.  It is important 
to note that the filters are ANDed together, which allows ranges, such as ‘greater than the first 
of last month, AND less than the first of this month’ which of course gives you all the files 
modified last month.  Some combinations may simply make no sense of course, but that is up 
to you! 
 
USE NOTE: A common date-range mistake is to do ‘greater than date a, and less than date b’.  
This would not pick up a file created exactly ON ‘date a’!  And it is certainly possible for a file to 
be created by some overnight job exactly at midnight!  (Personal experience here!) 
 
So to show all files from last month: 
 
Bad: ‘greater than the first of last month, and less than the first of this month’ 
Better: ‘greater than or equal to the first of last month, and less than the first of this month’ 
 
USE NOTE: Be careful of using ‘equals’ alone with date/times.  Some operating systems 
maintain times smaller than the seconds that are displayed.  So 13:15:23 might really be 
13:15:23.06 which is of course not equal. 
 
Filter Switches 
 
All these switches have names that start with the field you want compared, followed by a 2 
character comparison operator code. 
 
  



 
38 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Format of switch names:  /<fieldname><operator name>=<date/time value> 
 
Fields: 
TLM – Time Last Modified 
TLA – Time Last Accessed 
TCR – Time Created 
SIZE – Size of the file in bytes 
 
Operators: 
EQ – Equal 
GT – Greater Than 
GE – Greater Than or Equal to 
LT – Less Than 
LE – Less Than or Equal to 
 
Value for date/times: 
 
The value should be as  ‘yyyy-MM-dd:HH:mm:ss’ with the time parts being optional (you can 
just drop the seconds, seconds and minutes, or the whole time stamp). 
NOTE: This format is the default, but is configurable at startup.  Also, the notation here is from 
the Java language as used in the java.text.SimpleDateFormat class.  So for example, the upper 
case ‘HH’ means hours using a 24 hour clock.  One PM being = 13. 
 
Examples 
 
) filestatus/tcrge=2015-07-01 
 
Shows all files in the current working directory that were created (TCR) on or after July 1, 2015 
(Greater than or Equal to). 
 
) fi/tlmge=2015-07-01/tlmlt=2015-08-01/sizege=1000000 
 
Uses the minimally unique command name ‘fi’, and shows all files in the working directory that 
were modified (TLM) any time during July 2015 and are equal to or larger than one million 
bytes. 
 
  



 
39 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

The Sort Switch - /sort= 
 
The default sort order is the directory the file is in, and then the filename, both in ascending 
order.  The /sort= switch allows you to override that order for a variety of fields.  You specify 
the fields as the value of the switch, separating them with + signs.  You can put an optional 
minus sign (hyphen, ‘-‘) before the name of the field to cause a descending sort order for that 
file.  All text comparisons are done case-insensitive. 
 
Field Names (Can be minimally unique, such as ‘ty’ for ‘type’): 
 
Path – Use the full canonical path of the file for the sort, including all the way up to its parent 

directory. 
Name – The filename itself. 
Size – The size of the file in bytes. 
Directory – The directory the file is in. 
TLM – The ‘Time Last Modified’ of the file.  (Ascending is oldest to newest.) 
TLA – The ‘Time Last Accessed’ of the file.  (Ascending is oldest to newest.) 
TCR – The ‘Time Created’ of the file.  (Ascending is oldest to newest.) 
TYPE – The type, currently either a FILE, DIRECTORY, LINK, or OTHER.  (Sorted in alphabetical 

order) 
Examples: 
 
) fi/sort=size+-tlm 
 
Shows all files in the current working directory, sorted by size smallest to largest, and if there is 
a tie on size, then by time last modified, newest at the top, oldest at the bottom. 
 
) fi/so=type+tcr 
 
Shows all files in the working directory, with sub-directories at the top, files at the bottom, and 
then in order of time created from oldest at the top to newest at the bottom. 
 
  



 
40 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Formatting Control 
 
/noheader – Accepts no value, and simply causes the omission of descriptive headers. 
 
/fields= - Allows you to specify which fields are displayed.  Note that there is a default set, 
which can be varied with startup parameters (See Section 4). 
 

The field names passed as the value of the switch are separated by the ‘+’ character. 
The names can be minimally unique, and are: 
 
NAME – The filename. 
DIRECTORY – The directory the file (or sub-folder) is in. 
TYPE – Can be FILE, DIR, LINK, or OTHER 
SIZE – The file size in bytes. 
FLAGS – Can be ‘E’ (Execute access) and/or ‘R’ (Read access) and/or ‘W’ (Write access), 
and/or ‘H’ (Hidden). 
TCR – Time created. 
TLM – Time last modified. 
TLA – Time last accessed. 
 
Example: 
 
) fi/fields=na+ty+si+tlm 
 
Display the files’ name, type, size, and time last modified.  Note the minimally unique 
field names.  You could even do this with: 
 
) fi/f=n+ty+s+tlm 
 

 Because ‘f’ is minimally unique as a switch, as are ‘n’ and ‘s’ as field values. 
 

Filename paths and templates 
 
The default directory that is listed is the current working directory (See the ‘DIRECTORY’ 
command).  However you can list any folder you have access to, or even a full set of sub folders.  
You can also specify ‘wildcard’ template matching characters to filter the filenames. 
 
  



 
41 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Wildcards 
 
* - The asterisk matches any number of characters. 
? – The question mark matches any single character. 
# - The Hash mark (Pound sign) matches any number of characters AND all sub-directories 

under the point at which it is found in a template. 
 
These are best explained with examples: 
 
) fi # 
 
Will show all files in the current working folder AND all sub-folders. 
 
) fi #\*.txt 
 
Will show all files in the current and sub-directories that end in ‘.txt’. 
 
) fi C:\users\marvin\dev\#\*.java 
 
This will show all files ending in ‘.java’ that are in Marvin’s ‘dev’ folder or below. 
 
) fi/sor=-size # 
 
Show all files in your working directory and sub-directories, sorted by size descending.  Good 
way to find big files. 
 
Root directory note: A path starting with simply the separator character like ‘\’ on Windows will 
be interpreted as the root of the user’s current file system that their current working directory 
is in. 
 
Example (Windows): 
 
\users\zaphod 
 
Is equal to ‘C:\users\zaphod’ if the current working directory is also in the ‘C:\’ tree. 
  



 
42 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

 

FVAR – Set or Display Floating Point Variables 
 
As mentioned in Section 1, the CLI allows any number of variables.  This command allows you to 
set or display the value of Floating Point numeric variables. 
 
These are stored internally as a ‘double’ which is a 64 bit float in IEEE 754 format. 
 
Also see the [!fvar] pseudomacro. 
 

Argument 
 
With none – Displays the variable. 
With one – Sets the variable to that value. 
 

Switches 
 
/name= - Selects the name of the Floating Point variable to be other than the blank name.  This 

can be any text value. 
/previous – Display only.  Displays the value of the variable as it was in the previous 

environment level after a ‘push’ command. 
 

Examples 
 
) fvar 
0.0 
) fvar/nam=fv1 123.45 
) fvar/nam=fv1 
123.45 
)  



 
43 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

HELP – Display various help text about the CLI commands 
 
Displays helpful information about the CLI, commands, Pseudomacros, and miscellaneous 
topics. 
 

Syntax: 
 
) HELP <optional arguments> 
 

Arguments 
 
If there are no arguments, the command displays a brief listing of available topics.  If there are 
arguments, they are topics for which you want more detailed information, and the command 
will display that for every argument. 
 
Note: The topic arguments can be minimally unique.  For example: 
 
) help wr 
 
Will show help text for the topic on the ‘write’ command because ‘wr’ is minimally unique for 
that command. 
 

Switches 
 
/commands – Will display a list of all commands with a brief one line description of each. 
/pseudomacros - Will display a list of all pseudomacros with a brief one line description of each. 
 
 
 

  



 
44 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

IVAR – Set or Display Integer Variables 
 
As mentioned in Section 1, the CLI allows any number of variables.  This command allows you to 
set or display the value of Integer numeric variables. 
 
These are stored internally as a ‘long’ which is a 64 bit signed integer. 
 
Also see the [!ivar] pseudomacro. 
 

Argument 
 
With none – Displays the variable. 
With one – Sets the variable to that value. 
 

Switches 
 
/name= - Selects the name of the Integer variable to be other than the blank name.  This can be 

any text value. 
/previous – Display only.  Displays the value of the variable as it was in the previous 

environment level after a ‘push’ command. 
 

Examples 
 
) ivar 
0 
) ivar/nam=var1 123 
) ivar/nam=var1 
123 
) push 
) ivar/nam=var1 2345 
) ivar/nam=var1 
2345 
) ivar/prev/n=var1 
123 
 
Note: See how the previous value stack was still 123, even though the current value was 2345. 

  



 
45 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

LEVEL – Display the current environment stack level 
 
Simply displays the level of the user environment stack.  The base level at startup is 1. 
 
Also see the [!level] pseudomacro. 
 

Arguments 
 
None. 
 

Switches 
 
Just default set. 
 

Examples 
 
) lev 
LEVEL 1 
) push 
) lev 
LEVEL 2 
) pop 
) level 
LEVEL 1 
)  



 
46 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

LISTFILE – Set or display the current CLI output file/destination 
 
The LISTFILE user environment variable exists on the environment stack.  This command allows 
you to display it or change it.  It is where all CLI output goes. 
 

Argument 
 
If none, displays the current setting.  Possibly modified by switches, see below. 
 
One argument – Sets the current LISTFILE to the filename specified. 
 
Note: For the initial startup value, you can use ‘System.out’ or ‘stdout’.  They are synonymous, 
and are typically the user’s console for most Operating Systems. 
 

Switches 
 
/initial – Causes display of the initial setting.  No argument allowed. 
/previous – Causes display of the previous setting on the environment stack.  No argument 

allowed.  Causes an error if there is no previous level on the stack (I.E. no ‘PUSH’ 
command has happened) 

 

Operation 
 
When setting the LISTFILE to a filename, the SEARCHLIST will NOT be searched for the file, and 
the current working directory will be used as the directory for the file, or if a full pathname is 
specified, then that will be used. 
 
If the file exists, it will be appended to.  If not, it will be created. 
 
If it exists, it will also be checked to make sure it is not a directory, in which case an error is 
reported. 
 
Once set, if the file is in your current working directory (you did not specify a full path), it will 
NOT change if you do a DIRECTORY or CD command.  It will remain set to the directory you 
were in at the time. 
 
  



 
47 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Example 
 
) wr Hello World! 
Hello World! 
) listfile list.txt 
) wr Hello World! 
) listfile stdout 
) type list.txt 
Hello World! 
) 
 
Note that after the listfile was set to “list.txt”, the ‘write’ command did not echo anything.  Also 
note that we had to reset the listfile back to the initial “stdout” setting, otherwise the ‘TYPE’ 
command would also have gone to the “list.txt” file.  



 
48 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

LOGFILE – Set or display the current CLI logging destination 
 
The LOGFILE user environment variable exists on the environment stack.  This command allows 
you to display it or change it. 
 
The LOGFILE, when set, logs all CLI activity to the specified file.  This includes all input, prompts, 
and output. 
 

Argument 
 
If none, displays the current setting.  Possibly modified by switches, see below. 
 
One argument – Sets the current LOGFILE to the filename specified.  Can also be the text “null”, 
which will disable logging. 
 

Switches 
 
/disable – Disables logging.  No argument allowed. 
/previous – Causes display of the previous setting on the environment stack.  No argument 

allowed.  Causes an error if there is no previous level on the stack (I.E. no ‘PUSH’ 
command has happened) 

Operation 
 
If logging is disabled, you will get a message to that effect in display mode, rather than a 
filename.  Also see [!LOGFILE] which behaves a little differently. 
 
When setting the LOGFILE to a filename, the SEARCHLIST will NOT be searched for the file, and 
the current working directory will be used as the directory for the file, or if a full pathname is 
specified, then that will be used. 
 
If the argument is “null”, logging will also be disabled, as when using the /disable switch.  This 
allows you to use the pseudomacro form as an argument.  Ex: ) logfile [!logf/prev]   Which will 
disable logging if the previous environment stack level also had it disabled. 
 
If the file exists, it will be appended to.  If not, it will be created.  If it exists, it will also be 
checked to make sure it is not a directory, in which case an error is reported. 
 
Once set, if the file is in your current working directory (you did not specify a full path), it will 
NOT change if you do a DIRECTORY or CD command.  It will remain set to the directory you 
were in at the time. 
 
  



 
49 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

MESSAGE – Display the text associated with message codes 
 
Displays the text for a message code, such as error codes.  Also see [!message] . 
 

Arguments 
 
Allows display for one or more arguments. 
 

Switches 
 
Just the standard set. 
 
Example: 
 
) mess 10024 10025 
10024: Pseudomacro does not accept arguments. 
10025: Named String '%s' not found. 
) 
 
  



 
50 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

MOVE – Move files from one place to another in the file system 
 
Moves files from one place to another.  Also allows for a ‘copy’ mode where it simply makes a 
new copy of the file(s)  (Not to be confused with the COPY command).  It will honor templates, 
much like the FILESTATUS command, as well as the same file filters that the FILESTATUS 
command has, such as the date/time and size filters.  It can also do an ‘update’ by replacing 
existing files only if the source file has been modified more recently than the destination file. 
 
Files retain as much attribute information as is possible with the destination file system.  So 
things like ‘Time Last Modified’, ‘Time Created’, ‘Time Last Accessed’ and access rights are all 
kept, within the limits of the underlying Operating System and File System. 
 

Arguments 
 
First argument – The destination directory to move the file(s) to. 
Additional argument(s) – One or more filenames or templates specifying the source files (or 

directories) to be moved. 
 

Switches 
 
/verbosity= – Print extra information about the progress of the move, for each file.  Allows 3 

possible values.  If you do not specify the ‘=’ and just use ‘/verbosity’, the default value 
is 1: 
0 – No reporting except for errors.  Runs silently. 
1 – Reports only files that have been moved.  This is the default. 
2 – Full reporting.  Reports all files it will try and move, and then if it could or not. 

/copy – Copy the files, instead of truly ‘moving’ them.  Leaves the originals in place. 
/delete – Unconditionally delete an existing file in the destination directory. 
/recent – Overwrite the destination file if it exists and the new file is more recently modified. 
/flat – Move all files into the destination directory, regardless of what their origin directory 

structure was. 
/exclude= - Specifies a list of file templates to exclude from the operation.  Accepts more than 

one if you put them in double quotes and separate them with the ‘path separator’ (Like 
‘;’ in Windows or ‘:’ in Unix). Matches the filename only. 

And: The full set of filter switches from the FILESTATUS command such as /tlmgt= , /sizege=, 
etc... 

 
  



 
51 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Operation 
 
If a template is used for a source, then any directory structure below that point in the template 
will also be created in the destination to match, unless the /flat switch is present.  So for 
example, if you specified a source of ‘#\*.txt’, the command would look for all files ending in 
‘.txt’, anywhere under your current working directory (‘#’ means that).  If a file was found, say, 
in a subdirectory path ‘dev\src\data’, then that directory path would be created (if not there 
already) from the destination.  So if the destination was, say, ‘C:\users\eddie’ then the 
command will make sure that ‘C:\users\eddie\dev\src\data’ exists, and would move a file 
found, say, ‘control.txt’ in there. 
 

Examples 
 
) move/v=2 g:\Dev *.java 
Moving: C:\Users\Eddie\Documents\Dev\Test\Bob\src\RegexFilter.java --> G:\Dev\RegexFilter.java 
Moved: C:\Users\Eddie\Documents\Dev\Test\Bob\src\RegexFilter.java 
Moving: C:\Users\Eddie\Documents\Dev\Test\Bob\src\Test.java --> G:\Dev\Test.java 
Moved: C:\Users\Eddie\Documents\Dev\Test\Bob\src\Test.java 

 
Without the /v (or /verbosity) switch, this would have just reported that they moved. 
 
Or now, using the /copy switch.  Note we will do it twice. (Assumes destination is empty to 
start. 
 
) move/v=2/copy g:\Dev *.java 
Moving: C:\Users\Eddie\Documents\Dev\Test\Bob\src\RegexFilter.java --> G:\Dev\RegexFilter.java 
Moved: C:\Users\Eddie\Documents\Dev\Test\Bob\src\RegexFilter.java 
Moving: C:\Users\Eddie\Documents\Dev\Test\Bob\src\Test.java --> G:\Dev\Test.java 
Moved: C:\Users\Eddie\Documents\Dev\Test\Bob\src\Test.java 
) move/v=2/copy g:\Dev *.java 
Copying: C:\Users\Dave_2\Documents\Dev\Test\Bob\src\RegexFilter.java --> G:\Dev\RegexFilter.java 
Warning (10064) : Destination File 'G:\Dev\RegexFilter.java' already exists. 
Copying: C:\Users\Dave_2\Documents\Dev\Test\Bob\src\Test.java --> G:\Dev\Test.java 
Warning (10064) : Destination File 'G:\Dev\Test.java' already exists. 
 

Above, you can see the files were still in the source directory the second time around.  Also 
note that a ‘file exists’ is a ‘Class 2’ warning exception, so operation continues with the 
subsequent files. 
 
Now add the /recent switch.  Also note the /v switch (/verbosity) with no value. 
 
) move/v/copy g:\Dev *.java 
Copied: C:\Users\Eddie\Documents\Dev\Test\Bob\src\RegexFilter.java 
Copied: C:\Users\Eddie\Documents\Dev\Test\Bob\src\Test.java 
  



 
52 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

) move/v=2/copy/recent  g:\Dev *.java 
Copying: C:\Users\Dave_2\Documents\Dev\Test\Bob\src\RegexFilter.java --> G:\Dev\RegexFilter.java 
Skipping: G:\Dev\RegexFilter.java 
Copying: C:\Users\Dave_2\Documents\Dev\Test\Bob\src\Test.java --> G:\Dev\Test.java 
Skipping: G:\Dev\Test.java 
 

Here, you can see the files were skipped because they had just been copied and thus kept 
identical time-last-modified stamps.  They were not more recent.  You would not have seen 
these lines with the default verbosity (no /verbosity switch or just with no value). 
 
) move/v/exclude=”*.bak;*.tmp” G:\Dev Test* 
 
Moves all files starting with ‘Test’ EXCEPT those ending in ‘.bak’ or ‘.tmp’.  



 
53 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

PATHNAME – Display the resolved full path to a file or directory 
 
This simply prints the full path to the file or directory.  It will find it on the searchlist if just a 
name is given.  It will return an error if the file does not exist.  See also the [!pathname] 
pseudomacro. 
 
Also see [!pathname] . 
 

Argument 
 
Only one allowed, which is the filename of the file or directory you want the path for. 
 

Switches 
 
Only the standard set: /list=,/1=,/2=  
 

Operation 
 
You get a ‘Class 2’ warning by default if the file cannot be found. 
Also note that templates are not allowed. 
  



 
54 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

PID – Display the CLI’s ‘Process ID’ 
 
This displays the integer Process ID as assigned by the Operating System. 
 
See also the [!PID] Pseudomacro. 
 

Arguments 
 
None. 
 

Switches 
 
Only the standard /list=, /1=, /2= . 
 

Example 
 
) pid 
PID: 7234 
) 
  



 
55 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

PREFIX – Set or Display the prefix text used in prompting for commands 
 
See Section 1 for a description of how the CLI prompts you for input.  This command allows you 
to set/display the current ‘Prefix’ part, which is by default just a closed parenthesis followed by 
a space.  Also see the PROMPT command. 
 

Argument 
 
If none, displays the current prefix text. 
If one, sets the prefix to that value. 
 

Switches 
 
/initial – Sets the prefix to the initial setting.  No argument allowed. 
 

Example 
 
) pref 
Prefix: ‘) ‘ 
) pref “* “ 
* wr See the new prefix? 
See the new prefix? 
* pref/init 
)  
 
 

  



 
56 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

PROMPTCOMMANDS – Set or Display the commands to run when 
prompting for commands. 

 
Sets or displays the commands that can be executed as part of the prompt for user input.  See 
Section 1 for more information.  These commands cannot accept arguments, so must simply be 
display type commands such as DIRECTORY, TIME, DATE, and the like with no args.  The results 
of the commands are shown on the lines before the ‘Prefix’. 
 

Arguments 
 
None – Displays the current set of commands to execute. 
One or more – A list of commands to execute, without arguments. 
 

Switches 
 
/clear – Causes the list of commands to be cleared. 
/previous – Displays the previous user environment stack level setting. 
 

Example 
 
) prompt 
 
) prompt date time 
09/19/15 
17:11:53 
) wr Hello! 
Hello 
09/19/15 
17:12:10 
) prompt/clear 
)  

  



 
57 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

PUSH – Push a level on the environment stack 
 
See Section 1 for a discussion of the user environment stack.  This command ‘pushes’ a level on 
the stack, copying forward all the various settings and variables.  If you change any and then 
‘pop’ back, the changes will be lost on the previous stack level is restored.  This is handy for 
making temporary changes, as within macros and the like.  See also the POP command. 
 
Note: This includes your complete set of String, Integer, and Floating Point variables.  Named or 
un-named. 
 
Also see POP and LEVEL commands, and [!level] Pseudomacro. 
 

Arguments 
 
None. 
 

Switches 
 
Just standard set of /list=, /1=, /2= . 

  



 
58 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

POP – Pop a level off the environment stack 
 
See Section 1 for a discussion of the user environment stack.  This command ‘pops’ a level off 
the stack, restoring all user environment settings, as well as user variables. 
 
See also the PUSH and LEVEL commands, and the [!level] Psuedomacro. 
 

Arguments 
 
None. 
 

Switches 
 
Just standard set of /list=, /1=, /2= . 
 

Example 
 
) string String for first level 
) push 
) wr Copied forward string: [!string] 
Copied forward string: String for first level 
) string Changed for second level. 
) string 
Changed for second level. 
) pop 
) string 
String for first level 
)  
  



 
59 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

RENAME – Renames a file or directory 
 
Simply renames a file or directory from one name to another. 
 

Arguments 
 
Arg 1 – The source file or directory you want to rename. 
Arg 2 – The new name. 
 

Switch 
 
/verbose – Causes a message to be printed before attempting the rename operation. 
 

Operation 
 
The command will check to make sure that the source file exists, and that the new name does 
not.  You will get an error to that effect if needed. 
 
The command does NOT check the searchlist for these files.  It only works in the current 
working directory if these are relative references.  If they are absolute references, it will 
rename them to the fully qualified path and filename. 
  



 
60 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

RETURN – Return from a macro 
 
This simply returns right away from a macro.  Useful if you are testing for some case, like legal 
arguments or whatever, and do not want to continue in some case. 
 
NOTE: This command does nothing in interactive mode. 
 

Arguments 
 
None. 
 

Switches 
 
None.  Not even the /1=, /2=, or /l= . 
 
  



 
61 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

SEARCHLIST – Set or Display the current Searchlist 
 
See Section 1 for more detail on the ‘Searchlist’.  This command lets you display or set the 
current searchlist. 
 
The searchlist is a user environment variable which is used by some commands to find files, and 
to locate macros, among other things.  See specific commands for details of its use. 
 
Also see [!searchlist] . 
 

Arguments 
 
If none – Displays the current searchlist. 
One or more args – Each argument should be a directory reference which is added to the 

searchlist in order. 
 

Switches 
 
/previous – Display the searchlist from the previous user environment stack level.  No 

arguments allowed.  Reports an error if there is no previous level.  See PUSH and POP 
commands. 

/clear – Clears the searchlist.  



 
62 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

STRING – Set or Display the value of String Variables 
 
Allows you to set or display the value of String variables. 
 
You can have any number of String type variables, made unique with names.  If you do not 
specify a name using the /name= switch, there is one ‘blank’ named String that is used. 
 
Note: For named strings, the names to not conflict with other variable types such as Integer and 
Floating Point variables.  Each type maintains its own namespace. 
 
Note: Variables are part of the user environment stack.  Thus a ‘push’ command creates a 
whole new set, copied forward from the previous level.  If you ‘pop’ back, they are returned to 
their value in that level, and any new variables are lost. 
 
See also: [!string] 
 

Arguments 
 
None- Displays the value of the String requested. 
 
One or more – Sets the String to the concatenated value of the arguments and delimiters 
separating them if more than one. 
 

Switches 
 
/name= - Selects the name of the String variable to be other than the blank name.  This can be 

any text value of any length. 
/previous – Display only.  Displays the value of the String variable as it was in the previous 

environment level after a ‘push’ command. 
/clear  – Setting only.  Clears the String variable, setting it to the empty String: “”. 
 
Examples: 
 
) string Hello World! 
) write [!str] 
Hello World! 
) str/name=mystr1 My String One 
) wr String Value: [!str/nam=mystr1] 
String Value: My String One 
)   



 
63 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

SYSENV – Set/Display System Environment Values 
 
Most Operating Systems support a set of system environment variables.  Such as a ‘Path’.  
These vary by Operating System.  This command allows you to set or display these, but see the 
Operation section below. 
 
Note: The variable name may be case insensitive or case sensitive, depending on Operating 
System. 
 
Also see the [!SYSENV] Pseudomacro. 
 

Operation 
 
The System Environment values have no effect on the running of the CLI.  They ARE however 
passed to any program you run using the EXECUTE (or XEQ) commands.  Thus, changing these 
have no effect on the CLI, but will allow you to change settings for a program you will run from 
the CLI.  You can also add new values. 
 
These values are all kept together on the CLI stack, so you can PUSH, change them, and POP 
back to the original set. 
 

Argument 
 
If none – Displays all variables and their values. 
 
If one argument is present, displays the value for that variable, or a message that none could be 
found.  Note this message is not an exception, merely informational. 
 
If two arguments are present, the first is the ‘key’ or name of the variable, and the second is the 
new value.  It will add a kay/value pair if it does not exist. 
 

Switches 
 
/previous – Display the value(s) from the previous stack level.  Cannot be used when setting a 

value. 
 
  



 
64 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Examples 
 
) sysenv number_of_processors 
number_of_processors = 4 
) sysenv TEMP 
temp = C:\Users\Dave_2\AppData\Local\Temp 
) sysenv junk 
System Environment Value Not Found for ‘junk’. 
) 
  



 
65 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

SYSPROP – Display System Property Values 
 
The CLI is written in the Java® programming language.  Java maintains a set of system 
‘properties’, and this pseudomacro allows you to retrieve them.  You cannot alter them.  Also 
see the [!SYSPROP] pseudomacro. 
 
Note: The name may be case insensitive or case sensitive, depending on Operating System. 
 

Argument 
 
If none – Displays a list of all properties and values. 
If one – The property name. 
 

Switches 
 
None. 
 

Example 
 
) sysprop java.vendor 
Oracle Corporation 
)  
 

  



 
66 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

TIME – Display the current system time 
 
Display the current system time using either the default format, or using one you provide via a 
switch. 
 

Arguments 
 
None. 
 

Switches 
 
/format = Specifies a format to use for displaying the time.  This format must be in the same 

format as the Java java.text.SimpleDateFormat class definition.  This overrides the CLI 
default format.  See Section 4 on customization for a way to change the default time 
format. 

/tz= Specifies a timezone ID to use.  Must be from the set displayed using the 
/showalltimezones switch and is case sensitive.  May also be from any timezone aliases 
specified in the resource property file. 

/showalltimezones - Displays all available timezones.  The output format is:  '<timezone ID>' 
'<description>' : <sample time>. 

 Example output: 'CST' 'Central Standard Time' : 10:07:49 
 
Note: You may also include date fields in your format. 
 
Examples (note minimal uniqueness of switch in one): 
 
) time 
22:19:31 
) time/format=”hh:mm:ss aa” 
10:19:31 PM 
 
See also the [!time] pseudomacro which works much the same way.  



 
67 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

TRACE – Set or display the ‘Trace Mode’ 
 
The CLI can print out a trace of the command execution.  It will print out the fully resolved text 
of any command executed, with a special prefix so you can see them. 
 
If it is a simple command, the prefix will be ‘*** ‘.  However, if the command is being run from 
within a macro, the prefix will be repeated ‘#’ characters, with the number representing the call 
depth of the macro.  So if your first macro calls a second one, then the commands in the second 
one will be prefixed with ‘## ‘.  Also upon entering a macro, a line will be printed looking like: 
 ‘# MACRO: <macro name>’ . 
 

Argument 
 
‘on’, or ‘off’ – To turn tracing on or off. 
If no argument – Display current setting. 
  



 
68 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

TYPE – Displays the contents of a file 
 
Simply displays the contents of a file or files to the user, with some optional display formats 
controlled by switches. 
 

Arguments 
 
Requires one or more filenames or templates.  You can use a template to type multiple files.  If 
no path is specified for a filename, the Searchlist will be searched for the file.  The Searchlist is 
not searched for templates, only simple filenames.  A template will just work in the current or 
specified directory. 
 

Switches 
 
/verbose – Display extra file info before the contents, such as the file’s complete path. 
 
/hex – Display the contents as bytes in hexadecimal. 
 

Exceptions 
 
If the file does not exist, a ‘Class 2’ exception message is returned. 

  



 
69 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

VERSION – Display the current version of the CLI 
 
Simply displays the version. 
 

Arguments 
 
None. 
 

Switches 
 
Only the usual /list=, 1=, 2= 
 

Example 
 
) ver 
Version: 0.05 
) 

  



 
70 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

WRITE – Echoes text to the user or list file 
 
This simply echoes the arguments back to the user after expansion of the arguments.  Mostly 
useful in macros, or with the /list= switch to get text into a file. 
 

Arguments 
 
If there are no arguments, just a blank line is printed.  Otherwise, there is no limit to the 
number of arguments. 
 
Delimiter Note:  The write command attempts to preserve the delimiter you use between 
arguments.  These can be either spaces or commas.  If you need custom spacing, simply put 
text you want displayed inside of double quotes. 
 
Switches 
 
The standard set: /list=, /1=, /2= 
 
Note that the /list= switch (/l= for minimal uniqueness) is very useful on this command for 
pumping output to a file.  See also the LISTFILE command. 
 

Examples 
 
See some of the pseudomacros for examples, such as [!date] . 
 
  



 
71 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Section 3 – Pseudomacros 
 
Pseudomacros are much like inline ‘functions’ or ‘methods’ found in regular programming 
languages.  They are an extensive set of built-in functions that return values of various kinds, 
and are evaluated before the CLI command is executed.  All returned values are treated as text. 
 
The syntax is:  [!<name><optional switches> <optional arguments>] 
 
And as usual these can be nested.  So a pseudomacro can also be an argument to another 
pseudomacro.  They can appear anywhere in a command line.  They can even be in place of the 
command name itself, assuming they evaluate to a legal command name.  They can also be 
used as values of switches. 
 
Here is a simple example using text strings.  First setting a string to a value using the STRING 
command, and then displaying it in some text using the WRITE command and the [!STRING] 
pseudomacro: 
 
) string Slartibartfast 
) write My name is not [!string] 
My name is not Slartibartfast 
 
As with commands, many of the pseudomacros accept switches.  And as usual, the name of the 
pseudomacros and the switches are case insensitive, and can be minimally unique. 
 

Conditional Control Pseudomacros 
 
There is a special class of pseudomacros which allow conditional execution of your commands, 
either on a command line, or with multiple commands.  This is explained in more detail in 
Section 1.  They look like [!equal a b] (and many other comparisons), [!else], and [!end]. 
 

General Categories of Pseudomacros 
 

 Control – Noted above because they are so unique in operation. 

 Variables – String, Integer, and Floating point 

 Math – Usual operators plus some functions like trigonometry, etc… 

 System – Access to environment data like the current searchlist, environment stack 
level, etc… 

 Utility – Things like displaying the date, time, etc… 
 
Note: For ease of navigating this manual, each Pseudomacro will begin with a ‘!’ in its title. 
  



 
72 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!BASENAMEPART – Returns the part of a filename(s) with no extension. 
 
Returns just the name with no path or extension of the file or directory.  This just parses the 
path or filename as a string, it does not have to exist.  The ‘Base name’ is any part before the 
first period ‘.’ found.  If no ‘.’ Is found, then the whole name is returned.  An empty string is 
returned if there is no base part. 
 

Arguments 
 
One or more filenames, paths, or directory names. 
 

Returns 
 
The base names for each argument, separated by comma delimiters as needed, and an empty 
string if none exists. 
 

Switches 
 
None. 
 

Examples 
 
) wr Base name: [!basenamepart bin Test.dat [!path Test.java]] 
Base name: bin,Test,Test 
) wr Base name: [!bas TProps.java .dat timezones.txt] 
Base name: TProps,,timezones 
)   



 
73 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!CEILING – Returns a number rounded up the next integer. 
 
The traditional math function to round up a floating point number. 
 

Arguments 
 
One floating point or integer value. 
 

Returns 
 
The next whole integer greater than or equal to the argument. 
 

Switches 
 
None. 
 
 

  



 
74 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!CLASS1 – Return the current ‘Class 1’ error handling action. 
 
See Section 1 for more information on structured exception handling. 
 

Arguments 
 
None. 
 

Returns 
 
The text for the current Class 1 exception handling action. 
 

Switches 
 
/previous – Returns the setting from the previous environment stack level. 
 

Example 
 
) push 
) wr Previous stack level Class 1 Setting: [!class1/prev] 
Previous stack level Class 1 Setting: Error 
) pop 
) wr Previous stack level Class 1 Setting: [!class1/prev] 
Error (10026) : No previous environment available on environment stack - Likely due to 
/previous switch. 
 
 

  



 
75 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!CLASS2 – Return the current ‘Class 2’ error handling action. 
 
See Section 1 for more information on structured exception handling. 
 

Arguments 
 
None. 
 

Returns 
 
The text for the current Class 2 exception handling action. 
 

Switches 
 
/previous – Returns the setting from the previous environment stack level. 
 

Example 
 
) push 
) wr Previous stack level Class 2 Setting: [!class2/prev] 
Previous stack level Class 2 Setting: Warning 
) 
  



 
76 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!CHARACTER – Returns the string made up of characters at the specified 
Unicode ‘Code Points’ 

 
All characters, ASCII or not, can be represented numerically as part of the Unicode standard.  If 
you need a character that is not easily typed, you can use this pseudomacro to generate it. 
 
NOTE: To display international characters, your system, Operating System, console, etc.., must 
be configured for it.  Most will not display beyond the ASCII range, which is the low end of the 
Unicode tables.  You may often see a ‘?’ in the event you are not configured for these character 
sets. 
 

Arguments 
 
One or more numeric values.  These are converted to characters and concatenated to return a 
string. 
 
You can use decimal, octal, or hex representations of the values.  Examples for the ASCII letter 
‘A’: 
 
Decimal:     65 – Note: Decimal numbers MUST NOT start with a leading zero. 
Octal:  0101 – Note: Octal numbers MUST start with a leading zero. 
Hex:  0x41 – Note:  Notice the ‘x’ after a ‘0’.  Required for Hex. 
 

Switches 
 
None. 
 

Example: 
 
) write Test String: [!char 65 66 67] 
Test String: ABC 
) 
 
 

  



 
77 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!COS – Returns the Cosine of a number. 
 
Returns the trigonometric function ‘Cosine’ for any number of degrees. 
 
See also the [!degrees] pseudomacro which will convert radians to degrees. 
 

Argument 
 
One required – A number of degrees. 
 

Switches 
 
None. 
 
 
 

  



 
78 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!COUNT – Returns the number of arguments passed to it 
 
Simply counts the number of arguments.  Sounds trivial, but is useful when combined with 
other functions.  See the example for something useful. 
 

Arguments 
 
Zero or more of any kind. 
 

Switches 
 
None. 
 

Example 
 
Get the number of text files in a directory. 
 
) write The number of text files is: [!count [!filenames *.txt]] 
The number of text files is: 4 
) 
 
Can also be used to test for the existence of a file, by giving [!filenames] a specific file name, 
and then testing for the return to be 0 or 1 . 
  



 
79 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!DATE – Return the current system date. 
 
Returns the current system date using either the default format, or using one you provide via a 
switch. 
 
No arguments. 
 

Switches 
 
/format = Specifies a format to use for displaying the date.  This format must be in the same 

format as the Java java.text.SimpleDateFormat class definition.  This overrides the CLI 
default format.  See Section 4 on customization for a way to change the default date 
format. 

/tz= Specifies a timezone ID to use.  Must be from the set displayed using the TIME command’s 
/showalltimezones switch and is case sensitive.  May also be from any timezone aliases 
specified in the resource property file. 

 
Note: You may also include time fields in your format. 
 
Examples (note minimal uniqueness of switch in one): 
 
) write Today is: [!date] 
Today is: 09/05/15 
) write Today is [!date/format=”EEEE, MMMM d, yyyy”] 
Today is Monday, September 7, 2015 

  



 
80 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!DEGREES – Converts Radians to Degrees. 
 
Simply returns the number of degrees, given an arc angle in radians.  Useful for the 
trigonometric functions that take degrees as an argument, such as [!cosine], [!sine], [!tangent], 
etc… 
 
Also see [!pi] which returns the constant value for Pi, 3.1415926… etc… 
 

Argument 
 
One required – Angle in radians. 
 

Switches 
 
None. 
 

Example 
 
) write One pi Radians is [!degrees [!pi]] Degrees 
One pi Radians is 180.0 Degrees 
) 
  



 
81 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!DIRECTORY – Returns the user’s current working directory. 
 
Return the current working directory. 
 

Argument 
 
None. 
 

Switches 
 
/initial – Return the value it was when the CLI initially started up. 
/previous – Return the value of the previous environment stack level.  Will cause an error if 

there has not been a ‘push’ command to cause there to be a ‘previous’ level. 
 
Note: You will get an error if you try and use both switches together, or with an argument. 
 
Use Note: If you want to change to the ‘initial’ or ‘previous’ directory, use this pseudomacro as 

an argument to the ‘DIRECTORY’ command.  For example, to change to the initial 
directory, do this: 

 
  ) dir [!dir/i] 
 

  



 
82 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!ELSE – Begins an alternate conditional execution block. 
 
This is a special pseudomacro that is for controlling conditional logic flow.  Either within a line, 
or between commands.  Specifically it is the optional alternate path part of if/then/else logic, 
that starts with a conditional test pseudomacro such as [!equal x y] and ends with a [!end]. 
 
See Section 1 under Conditional Execution for more detail. 
 

Arguments 
 
None. 
 

Switches 
 
None. 
 

Example 
 
) write A and B are [!equal A B]Equal[!else]Not Equal[!end] 
A and B are Not Equal 
) write 12 and 12 are [!iequal 12 12]Equal[!else]Not Equal[!end] 
12 and 12 are Equal 
) 
 

  



 
83 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!END – Ends a conditional execution block. 
 
This is a special conditional execution control pseudomacro.  It simply ends a conditional block 
of code, either in a command, or between commands. 
 
See Section 1 under Conditional Execution for more detail. 
 

Arguments 
 
None. 
 

Switches 

 
None 
 

Examples 
 
See [!else] and conditional tests like [!equal] pseudomacro entries for examples. 

  



 
84 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!EQUAL – Conditional : Test for equality of two strings. 
 
This begins a conditional code block.  Specifically for comparison of two strings. 
 

Arguments 
 
Two strings required. 
 

Switches 
 
/ignorecase – Causes a case-insensitive comparison. 
 

Example 
 
Below is a series of lines that might be found in a macro.  See Section 1 regarding macros.  We 
are using the ‘CREATE’ command here with the /input switch to create the macro, and then we 
are running it. 
 
) create/I calendar.cli 
)) string/name=event1 09/20/15 
)) [!equal [!date] [!string/name=event1]] 
)) write You have an Event Scheduled Today! 
)) [!else] 
)) write No events today. 
)) [!end] 
)) ) 
) calendar 
No events today. 
) 
  



 
85 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!EXPAND – Expand arguments by parsing tokens and delimiters 
 
This will expand its arguments as if they had been typed in by the user on the command line. 
 

Arguments 
 
Zero or more arguments to be expanded. 
 

Switches 
 
/full – Performs a more complete parsing.  See operation section below. 
/argnum= - After expansion, full or not, only the specified text argument number will be 

returned (not delimiters).  The number is ‘zero relative’. 
 

Operation 
 
Sometimes in the CLI, particularly in String variables and date/time fields, multiple arguments 
and delimiters are put together in a single text field.  They are not maintained as separate and 
distinct fields. 
 
For example, doing: 
 
) string a b c 
 
Creates a single text field of ‘a b c’ with spaces.  They will not be parsed again as separate text 
fields normally.  So while you can do this: 
 
) write Test (a b c) 
Test a 
Test b 
Test c 
 
Where the a, b, and c are treated as separate text fields, and the WRITE command sees them in 
a parenthesized group to be repeated.  But in the following, see what happens: 
 
) write Test ([!string]) 
Test a b c 
 
This is because in the String variable, ‘a b c’ is a single text field.  The same might occur if you 
used the [!read] pseudomacro to get user input. 
 
  



 
86 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

To get around this, you use the [!expand] to re-parse a String or Strings as if they had originally 
been entered.  Thus the solution to the above is: 
 
) write Test ([!expand [!string]]) 
Test a 
Test b 
Test c 
 
Another good use of this is if you put the result of a [!filenames] reference into a string.   
 
/FULL switch explained: 
 
It is possible to have special characters that the CLI normally sees as separate command parts.  
Like a pseudomacro reference itself.  The basic operation of [!expand] will just treat those as 
text and not try and parse them down any further.  However, with the /full switch, it will 
process them, and the resulting command line will behave exactly as if it had been entered by 
the user.  Pseudomacro syntax in the text will evaluate, parentheses will cause repetition of 
commands, etc…  Example: 
 
) str “[!message 10025]” 
) wr [!str] 
[!message 10025] 
) wr [!expand [!str]] 
[!message 10025] 
) wr [!expand/full [!str]] 
Named String '%s' not found. 
 
First we put the raw text of a psuedomacro into the String variable.  We used double quotes 
around it to prevent execution.  The CLI treats anything in double quotes as just plain text. 
 
Then we expanded it normally, but the normal mode still just treated it as text. 
 
Finally, with the /full switch, the expanded string was actually executed. 
 
/argnum=  Example 
 
Say you want just the date a file was modified. 
If ‘Test.cli’ was modified on :  2015-09-14 17:26:24  Then: 
 
) wr Test.cli was changed on date: [!exp/arg=0 [!info/tlm Test.cli]] 
Test.cli was changed on date: 2015-09-14 

  



 
87 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!EXTENSIONPART – Returns the extension part of a filename(s). 
 
Just the extension after the first period ‘.’ Is found in the filename.  The file or directory does 
not have to exist.  Returns an empty string if there is no extension. 
 

Arguments 
 
One or more filenames, paths, or directory names. 
 

Returns 
 
The extension for each argument, separated by comma delimiters as needed, and an empty 
string if none exists. 
 

Switches 
 
None. 
 

Examples 
 
) wr Base name: [!extensionpart Test.dat bin [!path Test.java] myfile.test.dat] 
Base name: dat,,java,test.dat 
)  

  



 
88 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FABS – Returns the absolute value of a floating point number. 
 
Simply returns the mathematical absolute value of a floating point number. 
 

Argument 
 
One numeric argument required. 
 

Switches 
 
None. 
 
 

  



 
89 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FADD – Returns the result of adding two floating point numbers. 
 
Simply adds two floating point numbers. 
 

Arguments 
 
Two numeric values required. 
 

Switches 
 
None. 
 

  



 
90 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FDIVIDE – Floating Point division. 
 
Simple floating point division. 
 
Note: Division by zero will cause a Class 1 exception to occur.  If the user has set the action to 
be ‘warning’ or ‘ignore’, then this yields the string “Infinity” rather than a numeric value. 
 

Arguments 
 
Two required.  The first being the dividend, the second being the divisor. 
 

Switches 
 
None. 
 

  



 
91 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FEQUAL – Conditional : Floating Point ‘Equal to’ 
 
Test for Floating Point equality.  One of the special conditional comparison pseudomacros.  See 
Section 1 for more detail. 
 
Note: Floating point numbers are very rarely ‘equal’.  They can be very close, bit may be off a 
very small bit.  Better to multiply them by some power of 10 to get the accuracy you want, and 
then compare them as integers.  A future release may allow an accuracy factor via a switch. 
 
See the EQUAL Pseudomacro entry for more detail and examples of conditional logic. 
 

Arguments 
 
Two numeric arguments required. 
 

Switches 
 
None. 
 

  



 
92 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FGE – Conditional : Floating Point ‘Greater than or Equal to’ 
 
Test for Floating Point ‘Greater than or Equal to’.  One of the special conditional comparison 
pseudomacros.  See Section 1 for more detail. 
 
See the EQUAL Pseudomacro entry for more detail and examples of conditional logic. 
 

Arguments 
 
Two numeric arguments required. 
 
Compares for :  arg1 >= arg2 
 

Switches 
 
None. 
 

  



 
93 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FGT – Conditional : Floating Point ‘Greater Than’ 
 
Test for Floating Point ‘Greater Than’.  One of the special conditional comparison 
pseudomacros.  See Section 1 for more detail. 
 
See the EQUAL Pseudomacro entry for more detail and examples of conditional logic. 
 

Arguments 
 
Two numeric arguments required. 
 
Compares for :  arg1 > arg2 
 

Switches 
 
None. 

  



 
94 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FILENAMES – Returns a list of files matching conditions 
 
This operates much like the FILESTATUS command, except it only returns a comma separated 
list of names that match the conditions specified by the switches. 
 
See FILESTATUS command for more detail. 
 

Arguments 
 
Zero or more file templates to match against.  All templates are honored here, including use of 
the ‘#’.  With no arguments, it lists files in the current working directory. 
 

Switches 
 
/sort= - Same fields can be sorted on as with the FILESTATUS command. 
/pathname – Show full file pathname, not just the filename. 
/directories – List only directories. 
/nodirectories – Do not list directories. 
/hidden – Show Operating System ‘hidden’ files.  Default is to not show them. 
/exclude= - Specifies a list of file templates to exclude from the operation.  Accepts more than 

one if you put them in double quotes and separate them with the ‘path separator’ (Like 
‘;’ in Windows or ‘:’ in Unix). Matches the filename only. 

 
Filter Switches: Same set as in FILESTATUS command.  Such as /tlmgt=2015-09-10, or 

/sizege=1000000 .  See the FILESTATUS command for details. 

 

Examples 
 
) filestatus 
      Name         Type Size      Modified      
bin                DIR   0   09/11/15 09:48:04 
docs               DIR   0   09/11/15 09:48:11 
list.txt           FILE  249  08/24/15 16:57:47 
props.txt          FILE 4,473 08/31/15 16:15:25 
RegexFilter.class FILE  495  08/14/15 15:49:30 
RegexFilter.java  FILE  315  08/14/15 15:49:26 
Test.java          FILE  629  09/11/15 09:13:27 
) wr Files: [!filenames] 
Files: bin,docs,list.txt,props.txt,RegexFilter.class,RegexFilter.java,Test.java 
) wr Dirs: [!fi/dir] 
Dirs: bin,docs 
) wr Source: [!fi *.java] 
Source: RegexFilter.java,Test.java 
) 



 
95 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FLE – Conditional : Floating Point ‘Less than or Equal to’ 
 
Test for Floating Point ‘Less than or Equal to’.  One of the special conditional comparison 
pseudomacros.  See Section 1 for more detail. 
 
See the EQUAL Pseudomacro entry for more detail and examples of conditional logic. 
 

Arguments 
 
Two numeric arguments required. 
 
Compares for :  arg1 <= arg2 
 

Switches 
 
None. 

  



 
96 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FLOOR – Returns a number rounded down to the next integer. 
 
Rounds a number down to the next lower or equal integer.  The opposite of [!CEILING]. 
 

Arguments 
 
One floating point or integer value. 
 

Returns 
 
The next whole integer less than or equal to the argument. 
 

Switches 
 
None. 

  



 
97 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FLT – Conditional : Floating Point ‘Less Than’ 
 
Test for Floating Point ‘Less Than’.  One of the special conditional comparison pseudomacros.  
See Section 1 for more detail. 
 
See the EQUAL Pseudomacro entry for more detail and examples of conditional logic. 
 

Arguments 
 
Two numeric arguments required. 
 
Compares for :  arg1 < arg2 
 

Switches 
 
None. 

  



 
98 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FMULTIPLY – Floating Point Multiplication 
 
Simply multiplies two floating point numbers. 
 

Arguments 
 
Two numeric values required. 
 

Switches 
 
None. 

  



 
99 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FNAMEPART – Returns the filename part of a path. 
 
Returns just the filename part of a full path.  This just parses the path or filename as a string, it 
does not have to exist. 
 

Arguments 
 
One or more filenames, paths, or directory names. 
 

Returns 
 
The file name for each argument, separated by comma delimiters as needed 
 

Switches 
 
None. 
 

Examples 
 
) wr Filename: [!fnamepart C:\users\westly\docs\resume.doc] 
Filename: resume.doc 
)   



 
100 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FNEQUAL – Conditional : Floating Point ‘Not Equal to’ 
 
Test for Floating Point ‘Not Equal to’.  One of the special conditional comparison 
pseudomacros.  See Section 1 for more detail. 
 
See the EQUAL Pseudomacro entry for more detail and examples of conditional logic. 
 

Arguments 
 
Two numeric arguments required. 
 

Switches 
 
None. 

  



 
101 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FSUBTRACT – Floating Point Subtraction 
 
Simply subtracts one Floating Point number from another. 
 

Arguments 
 
Two numeric values required. 
 
Arg 1 – The number to subtract from.  Aka the ‘Minuend’. 
Arg 2 – The number to be subtracted from Arg 1.  Aka the ‘Subtrahend’. 
 

Switches 
 
None. 

  



 
102 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!FVAR – Returns the value of a Floating Point Variable 
 
This returns the value of a ‘Floating Point’ variable.  There is a default unnamed variable, or you 
can name your variables.  You use the FVAR command to set the variable value.  The unnamed 
variable will have a value of 0.0 if not set.  If you access a named variable and it has not been 
set, you will get an error back. 
 

Arguments 
 
None. 
 

Switches 
 
/name= - Optional.  Specifies the name of the variable.  Uses the unnamed variable if not 

specified.  You can have as many of these as your system memory allows.  Note these 
names are distinct from other variable types, so a name of ‘myvar’ for an FVAR is not 
the same variable as ‘myvar’ for a STRING variable. 

/previous – Returns the value from the previous level of the user environment stack.  See PUSH 
and POP commands, as well as Section 1. 

 

Example 
 
) fvar/name=var1 123 
) fvar/name=var2 234 
) write Sum of var1 and var2: [!fadd [!fvar/name=var1] [!fvar/name=var2]] 
Sum of var1 and var2: 357.0 
 
Note the use of the [!fadd] Floating Point addition pseudomacro. 

  



 
103 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!IABS – Returns the ‘Absolute Value’ of an integer 
 
Simply returns the mathematical absolute value of an integer number. 
 
 

Argument 
 
One numeric argument required. 
 
Note: A floating point argument will be truncated (floor) to an integer before processing. 
 

Switches 
 
None. 
 

  



 
104 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!IADD – Integer Addition 
 
Simply adds two integer numbers. 
 

Arguments 
 
Two numeric values required. 
 
Note: A floating point argument will be truncated (floor) to an integer before processing. 
 

Switches 
 
None. 
 

  



 
105 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!IDIVIDE – Integer Division 
 
Simple integer division. 
 
Note: Division by zero will cause a Class 1 exception to occur.  If the user has set the action to 
be ‘warning’ or ‘ignore’, then this yields the string “Infinity” rather than a numeric value. 
 

Arguments 
 
Two numbers required.  The first being the dividend, the second being the divisor. 
 
Note: A floating point argument will be truncated (floor) to an integer before processing. 
 

Switches 
 
None. 

  



 
106 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!IEQUAL – Conditional : Integer ‘Equal To’ 
 
Test for Integer equality.  One of the special conditional comparison pseudomacros.  See 
Section 1 for more detail. 
 
See the EQUAL Pseudomacro entry for more detail and examples of conditional logic. 
 

Arguments 
 
Two integer arguments required. 
 
Note: A floating point argument will cause a Class 1 exception.  Use [!floor] on the argument if 
you need to compare as integers, or use [!fequal] which will accept integers as arguments. 
 

Switches 
 
None. 

  



 
107 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!IGE – Conditional : Integer ‘Greater Than or Equal To’ 
 
Test for Integer ‘Greater than or Equal to’.  One of the special conditional comparison 
pseudomacros.  See Section 1 for more detail. 
 
See the EQUAL Pseudomacro entry for more detail and examples of conditional logic. 
 

Arguments 
 
Two integer arguments required. 
 
Compares for :  arg1 >= arg2 
 
Note: A floating point argument will cause a Class 1 exception.  Use [!floor] on the argument if 
you need to compare as integers, or use [!fge] which will accept integers as arguments. 
 

Switches 
 
None. 

  



 
108 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!IGT – Conditional : Integer ‘Greater Than’ 
 
Test for Integer ‘Greater Than.  One of the special conditional comparison pseudomacros.  See 
Section 1 for more detail. 
 
See the EQUAL Pseudomacro entry for more detail and examples of conditional logic. 
 

Arguments 
 
Two integer arguments required. 
 
Compares for :  arg1 > arg2 
 
Note: A floating point argument will cause a Class 1 exception.  Use [!floor] on the argument if 
you need to compare as integers, or use [!fgt] which will accept integers as arguments. 
 

Switches 
 
None. 

  



 
109 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!ILE – Conditional : Integer ‘Less Than or Equal To’ 
 
Test for Integer ‘Less than or Equal to’.  One of the special conditional comparison 
pseudomacros.  See Section 1 for more detail. 
 
See the EQUAL Pseudomacro entry for more detail and examples of conditional logic. 
 

Arguments 
 
Two integer arguments required. 
 
Compares for :  arg1 <= arg2 
 
Note: A floating point argument will cause a Class 1 exception.  Use [!floor] on the argument if 
you need to compare as integers, or use [!fle] which will accept integers as arguments. 
 

Switches 
 
None. 

  



 
110 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!ILT – Conditional : Integer ‘Less Than’ 
 
Test for Integer ‘Less Than’.  One of the special conditional comparison pseudomacros.  See 
Section 1 for more detail. 
 
See the EQUAL Pseudomacro entry for more detail and examples of conditional logic. 
 

Arguments 
 
Two integer arguments required. 
 
Compares for :  arg1 < arg2 
 
Note: A floating point argument will cause a Class 1 exception.  Use [!floor] on the argument if 
you need to compare as integers, or use [!flt] which will accept integers as arguments. 
 

Switches 
 
None. 

  



 
111 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!IMOD – Integer Modulo Function 
 
Returns the ‘MOD’ function of two integers.  This is also sometimes called the ‘remainder’ 
function. 
 

Arguments 
 
Two numbers required.  Any floating point numbers will be truncated (floor) to integers before 
the operation. 
 
Returns ‘arg1 mod arg2’.  Sometimes written in languages as ‘arg1 % arg2’. 
 

Switches 
 
None. 

  



 
112 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!IMULTIPLY – Integer Multiplication 
 
Simply multiplies two integer numbers. 
 

Arguments 
 
Two numeric values required. 
 
Note: A floating point argument will be truncated (floor) to an integer before processing. 
 

Switches 
 
None. 

  



 
113 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!INEQUAL – Conditional : Integer ‘Not Equal To’ 
 
Test for Integer inequality.  One of the special conditional comparison pseudomacros.  See 
Section 1 for more detail. 
 
See the EQUAL Pseudomacro entry for more detail and examples of conditional logic. 
 

Arguments 
 
Two integer arguments required. 
 
Note: A floating point argument will cause a Class 1 exception.  Use [!floor] on the argument if 
you need to compare as integers, or use [!fequal] which will accept integers as arguments. 
 

Switches 
 
None. 

  



 
114 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!ISUBTRACT – Integer Subtraction 
 
Simply subtracts two integer numbers. 
 

Arguments 
 
Two numeric values required. 
 
Arg 1 – The number to subtract from.  Aka the ‘Minuend’. 
Arg 2 – The number to be subtracted from Arg 1.  Aka the ‘Subtrahend’. 
 
Note: A floating point argument will be truncated (floor) to an integer before processing. 
 

Switches 
 
None. 

  



 
115 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!INFO – Returns various file information fields for a file or directory 
 
This allows you to access a specific field of information about a file or directory.  For example 
just its size in bytes. 
 

Argument 
 
One name or pathname to a file or directory.  It must exist or a Class 1 error will be raised. 
 

Switches 
 
If none – Just the filename itself is returned. 
/size – The file size in bytes is returned. 
/type – The file type, such as ‘FILE’, or ‘DIR’ etc… is returned. 
/tcr – The time of creation. 
/tla – The time last accessed. 
/tlm – The time last modified 
 
NOTE: For the time switches, the format used is the default date/time as defined in the CLI’s 
resource property file.  See Section #### for more information.  It is also two fields by default, a 
date and a time, returned as a single string with a space between them.  So if you want to break 
them apart, use the [!expand] pseudomacro using the /argnum= switch. 
 

Example 
 
) write The Test macro is [!info/siz Test.cli] bytes in size. 
The Test macro is 174 bytes in size. 
) write The Test macro was last modified at [!info/tlm Test.cli] . 
The Test macro was last modified at 2015-09-14 17:26:24 . 
) 
  



 
116 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!IVAR – Returns the value of an Integer Variable 
 
This returns the value of an Integer variable.  There is a default unnamed variable, or you can 
name your variables.  You use the IVAR command to set the variable value.  The unnamed 
variable will have a value of 0 if not set.  If you access a named variable and it has not been set, 
you will get an error back. 
 

Arguments 
 
None. 
 

Switches 
 
/name= - Optional.  Specifies the name of the variable.  Uses the unnamed variable if not 

specified.  You can have as many of these as your system memory allows.  Note these 
names are distinct from other variable types, so a name of ‘myvar’ for an IVAR is not the 
same variable as ‘myvar’ for an FVAR variable. 

/previous – Returns the value from the previous level of the user environment stack.  See PUSH 
and POP commands, as well as Section 1. 

 

Example 
 
) ivar/name=var1 123 
) ivar/name=var2 234 
) write Sum of var1 and var2: [!iadd [!ivar/name=var1] [!ivar/name=var2]] 
Sum of var1 and var2: 357 
 
Note the use of the [!iadd] Integer addition pseudomacro. 

  



 
117 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!LASTERRORCODE – Returns the error code for the last command. 
 
Returns the integer error code associated with the last command executed.  Zero ‘0’ for no 
error. 
 
See also: [!lastexceptiontype] 
 

Arguments 
 
None. 
 

Switches 
 
None. 
 
Example: 
 
) write Hello World! 
Hellow World! 
) wr Last Error was: [!lasterr] 
Last Error was: 0 
) wr String is: [!str foo] 
Error (10024) : Pseudomacro does not accept arguments. 
) wr Last Error was: [!lasterr] 
Last Error was: 10024 
)   



 
118 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!LASTEXCEPTIONTYPE – Returns the exception for the last command. 
 
Returns the exception type associated with the last command executed.  ‘None’ if no error had 
been reported. 
 
Note: These correspond to the ‘Class 1’ and ‘Class 2’ exception levels.  See the discussion of 
error handling in Section 1. 
 
See also: [!lasterrorcode] 
 

Arguments 
 
None. 
 

Switches 
 
None. 
 
Example: 
 
) write Hello World! 
Hellow World! 
) wr Last Exception was: [!lastex] 
Last Exception was: None 
) wr String is: [!str foo] 
Error (10024) : Pseudomacro does not accept arguments. 
) wr Last Exception was: [!lastex] 
Last Exception was: Error 
)   



 
119 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!LEVEL – Returns the current ‘Environment Stack’ level 
 
Returns the integer number of levels on the environment stack.  If you have not done any 
‘push’ commands, you are at the first level ‘1’. 
 

Arguments 
 
None. 
 

Switches 
 
None. 
 
 
Example: 
 
) wr The current level is: [!lev] 
The current level is: 1 
) 
 

  



 
120 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!LISTFILE – Returns the value of the LISTFILE Environment Setting 
 
The LISTFILE user environment variable exists on the environment stack.  This pseudomacro 
returns the value.  See the LISTFILE command and Section 1 for more information on this 
variable. 
 

Argument 
 
None. 
 

Switches 
 
/initial – Returns the initial setting.  Usually ‘System.out’ or ‘stdout’, which are synonymous. 
/previous – Returns the previous setting on the environment stack.  No argument allowed.  

Causes an error if there is no previous level on the stack (I.E. no ‘PUSH’ command has 
happened) 

 

Example 
 
) write Current List File is: [!listfile] 
Current List File is: System.out 
) write Current List File is: [!list/prev] 
Error (10026) : No previous environment available on environment stack - Likely due to 
/previous switch. 
) 

  



 
121 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!LOGFILE – Return the current CLI logging destination 
 
The LOGFILE user environment variable exists on the environment stack.  This pseudomacro 
allows you to get the current setting. 
 

Argument 
 
None. 
 

Switches 
 
/previous – Returns the previous setting on the environment stack.  No argument allowed.  

Causes an error if there is no previous level on the stack (I.E. no ‘PUSH’ command has 
happened) 

 

Operation 
 
If logging is disabled, this will return “null”, rather than a filename.  Also see the LOGFILE 
command which behaves a little differently. 
 

  



 
122 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!LOGN – Returns the ‘Natural Log’ of a Floating Point number. 
 
Returns the math function ‘Natural Log’ for a number.  Often expressed as Logn of x. 
 

Argument 
 
One required – A number you want the Logn of. 
 

Switches 
 
None. 

  



 
123 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!LOG10 – Returns the ‘ Log Base 10’ of a Floating Point number. 
 
Returns the math function ‘Log Base 10’ for a number.  Often expressed as Log10 of x. 
 

Argument 
 
One required – A number you want the Log10 of. 
 

Switches 
 
None. 
  



 
124 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!MESSAGE – Returns the text for a message key 
 
Similar to the MESSAGE command, this returns the text associated with a key, such as from an 
error code. 
 

Argument 
 
One and only one required.  They message key. 
 
Example: 
 
) write The text for error code 10025 is: [!message 10025] 
The text for error code 10025 is: Named String '%s' not found. 
) 
 

  



 
125 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!NEQUAL – Conditional : String ‘Not Equal To’ 
 
This begins a conditional code block.  Specifically for inequality of two strings. 
 
Note: This is synonymous with [!SNEQUAL] (String Not Equal). 
 

Arguments 
 
Two strings required. 
 

Switches 
 
/ignorecase – Causes a case-insensitive comparison. 
 

Example 
 
See [!EQUAL] for an example of conditional execution.  



 
126 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!PARENTPART – Returns the parent part of a pathname. 
 
Returns just the path of the directory level above the referenced file or directory.  This just 
parses the path as a string, so the file or directory does not actually have to exist. 
 

Arguments 
 
One or more filenames, paths, or directory names. 
 

Returns 
 
The parent path for each argument, separated by comma delimiters as needed, or an empty 
string if none exists (you are at the root). 
 

Switches 
 
None. 
 

Examples 
 
) wr Parent: [!parentpart C:\users\inigo\docs\resume.doc] 
Parent: C:\users\inigo\docs 
)   



 
127 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!PATHNAME – Returns the resolved full path to a file or directory 
 
This simply returns the full pathname of the file or directory, or various parts of the name.  It 
will find it on the searchlist if just a name is given.  It will return an error if the file does not 
exist.  See also the PATHNAME command. 
 

Argument 
 
Only one allowed, which is the filename of the file or directory you want the path info for. 
 

Switches 
 
If none – Returns the full ‘Canonical Path’ to the file or directory.  Or returns a ‘does not exist’ 

error. 
 
The next switches are mutually exclusive.  You can only choose one. 
 
/filename – Returns just the filename part of a path.  The file or directory does NOT need to 

exist. 
/extension – Returns just the ‘extension’ of the filename, such as ‘txt’ for a file named 

‘billing.txt’.  The file does NOT need to exist. 
/parent – Returns the parent directory of the specified file or directory.  If a full path is specified 

as an argument, then the file does not need to exist.  However if just a simple file or 
directory is specified, it will try and resolve its location first, and then return the parent, 
so you could then get a ‘does not exist’ error.  This switch is thus useful for finding the 
directory containing a file that is found someplace on the searchlist.  



 
128 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!PI – Returns the constant value for Pi (π) 
 
Simply provides the constant value for Pi (π) :  3.1415926…. etc… 
 

Arguments 
 
None. 
 

Switches 
 
None. 
 

Example 
 
) wr Pi is: [!pi] 
Pi is: 3.141592653589793 
) 
  



 
129 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!PID – Return the CLI’s ‘Process ID’ 
 
This returns the integer Process ID as assigned by the Operating System. 
 
Note: This can be useful for things like creating temporary working files that should not conflict 
with other programs, as the PID is unique for any given executing instance on known Operating 
Systems. 
 
See also the PID Command. 
 

Arguments 
 
None. 
 

Switches 
 
None . 
 

Example 
 
) wr The PID for this CLI is: [!pid] 
The PID for this CLI is: 7234 
) create TempFile_[!pid] 
) 

  



 
130 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!RANDOM – Returns a random number x where: 0.0 <= x < 1.0 
 
Just returns a random floating point number with an approximately even distribution across the 
range greater than or equal to 0.0 and less than 1.0 . 
 

Arguments 
 
None. 
 

Switches 

 
None.  



 
131 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!READ – Prompt the user and read input 
 
This will use any arguments as a prompt to the user, and then wait for the user to enter text.  
The text is expanded as if it was typed into the command line. 
 
Note: Any special characters such as angle brackets, parenthesis, and other pseudomacro 
references will NOT be further expanded. 
 

Arguments 
 
The arguments are used as text to prompt the user.  One space is added at the end.  Delimiters 
are preserved. 
 

Switches 
 
None. 
 
Example: 
 
) string [!read Please enter your name:] 
Please enter your name: Trillian 
) write Your name is [!str] 
Your name is Trillian 
) 
 
The above example took the text entered and set the default String variable to it.  Then the 
‘write’ command used the [!string] pseudomacro to display the value of the String.  



 
132 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!ROOTPART – Returns the filesystem root part of a pathname. 
 
Returns just the root of the file or directory path.  This just parses the path as a string, so the 
file or directory does not actually have to exist.  Note that if a full path is not specified, a root 
may not be found.  The root will vary by Operating System.  For example, in Windows it might 
be “C:\” or “F:\” etc… 
 

Arguments 
 
One or more filenames, paths, or directory names. 
 

Returns 
 
The file system root for each argument, separated by comma delimiters as needed, or an empty 
string if none exists (you are at the root). 
 

Switches 
 
None. 
 

Examples 
 
) wr Root: [!rootpart C:\users\inigo\docs\resume.doc] 
Root: C:\ 
)   



 
133 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!ROUND – Rounds a Floating Point number to the nearest integer 
 
Returns the usual mathematical function for rounding floating point numbers to integers.  That 
is, for values less than one half a number, it rounds down to the full integer, and for numbers 
one half and above it rounds up to the next highest integer.  Thus 1.49999 rounds to 1 and 1.5 
rounds to 2. 
 

Argument 
 
One numeric value. 
 

Switches 
 
None.  



 
134 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!SEARCHLIST – Returns the current value of the SEARCHLIST 
 
Just returns the current (or previous stack level with /previous switch) value of the SEARCHLIST 
user environment variable. 
 
See also the SEARCHLIST command. 
 

Arguments 
 
None. 
 

Switches 
 
/previous – Returns the value from the previous level of the user environment stack.  Causes a 

Class 1 exception if there is no previous level (no previous PUSH).  If Class 1 is set to 
Ignore or Warning, returns an empty searchlist.  



 
135 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!SEQUAL – Conditional : Alternate form of !EQUAL 
 
This begins a conditional code block.  Specifically for comparison of equality for two strings. 
 
It is a synonym for [!EQUAL], but starts with an ‘S’ to be consistent with the naming of other 
conditional pseudomacros that start with the letter of their type (S, I, F). 
 

Arguments 
 
Two strings required. 
 

Switches 
 
/ignorecase – Causes a case-insensitive comparison. 
 

Example 
 
Below is a series of lines that might be found in a macro.  See Section 1 regarding macros.  We 
are using the ‘CREATE’ command here with the /input switch to create the macro, and then we 
are running it. 
 
) create/I calendar.cli 
)) string/name=event1 09/20/15 
)) [!sequal [!date] [!string/name=event1]] 
)) write You have an Event Scheduled Today! 
)) [!else] 
)) write No events today. 
)) [!end] 
)) ) 
) calendar 
No events today. 
) 

  



 
136 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!SGE – Conditional : String ‘Greater Than or Equal To’ 
 
This begins a conditional code block.  Specifically for comparison of two strings. 
 
See Section 1 on conditional execution. 
 

Arguments 
 
Two strings required. Executes the block if Arg1 is lexically >= Arg2. 
 

Switches 
 
/ignorecase – Causes a case-insensitive comparison. 
 

  



 
137 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!SGT – Conditional : String ‘Greater Than’ 
 
This begins a conditional code block.  Specifically for comparison of two strings. 
 
See Section 1 on conditional execution. 
 

Arguments 
 
Two strings required. Executes the block if Arg1 is lexically > Arg2. 
 

Switches 
 
/ignorecase – Causes a case-insensitive comparison. 
 

  



 
138 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!SIN – Return the Sine function of a Floating Point number 
 
Returns the trigonometric function ‘Sine’ for any number of degrees. 
 
See also the [!degrees] pseudomacro which will convert radians to degrees. 
 

Argument 
 
One required – A number of degrees. 
 

Switches 
 
None. 

  



 
139 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!SLE – Conditional : String ‘Less Than or Equal To’ 
 
This begins a conditional code block.  Specifically for comparison of two strings. 
 
See Section 1 on conditional execution. 
 

Arguments 
 
Two strings required. Executes the block if Arg1 is lexically <= Arg2. 
 

Switches 
 
/ignorecase – Causes a case-insensitive comparison. 
 

  



 
140 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!SLT – Conditional : String ‘Less Than’ 
 
This begins a conditional code block.  Specifically for comparison of two strings. 
 
See Section 1 on conditional execution. 
 

Arguments 
 
Two strings required. Executes the block if Arg1 is lexically < Arg2. 
 

Switches 
 
/ignorecase – Causes a case-insensitive comparison. 
 

  



 
141 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!SNEQUAL – Conditional : Alternate form of [!NEQUAL] 
 
This begins a conditional code block.  Specifically for inequality of two strings. 
 
Note: This is synonymous with [!NEQUAL] (Not Equal). 
 

Arguments 
 
Two strings required. 
 

Switches 
 
/ignorecase – Causes a case-insensitive comparison. 
 

Example 
 
See [!EQUAL] for an example of conditional execution.  



 
142 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!STRING – Returns a String variable or length.  With optional functions. 
 
This returns the value of a String variable.  There is a default unnamed string, or you can name 
your Strings.  You use the STRING command to set the variable value.  The unnamed String 
variable will have a value of an empty string.  I.E. “” of length 0.  If you access a named String 
variable and it has not been set, you will get an error back. 
 
There are also String operations possible with some switches.  You can get the length of the 
string, take a substring of it, and find the position of another string within the variable. 
 
Note: String offsets are zero relative.  That is, the first character is at position 0. 
 
Example: 
 
) string This is the un-named string 
) string/name=mystr This is my String 
) write The value of the unnamed string is: [!str] 
The value of the unnamed string is: This is the un-named string 
) write The value of my named string is: [!str/na=mystr] 
The value of my named string is: This is my String 
 

Switches 
 
/name= - Specifies the name of the String variable.  You can have as many of these as your 

system memory allows. 
/previous – Returns the value from the previous level of the user environment stack.  See PUSH 

and POP commands, as well as Section 1. 
/length – Returns the length of the string in characters. 
/index – Requires an argument in the Pseudomacro and returns the position (zero relative) of 

the first occurrence of the argument text within this string.  Or ‘-1’ if it is not found. 
/start= - Specifies the starting position of a substring of the string variable to return.  The 

default if not present is 0. 
/end= - Specifies the ending position of a substring of the string variable to return.  The default 

if not present is the end of the string.  NOTE:  The end position of the string would be its 
length-1.  So “abc” would be indexed with “a” at position 0, “b” at position 1, and “c” at 
position 2. 

 
  



 
143 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Argument 
 
One argument is allowed only with the /index switch.  In which case the argument text is 
searched for in the String variable. 
 
Examples  
 
Note: Minimal uniqueness used for switches and commands etc… 
 
) string abcdefg 
) wri Substring: [!str/start=2/end=4] 
Substring: cde 
) wri Substring: [!str/end=4] 
Substring: abcde 
) wr Length: [!str/len] 
Length: 7 
) wr Index of efg: [!str/index efg] 
Index of efg: 4 
) wr Index of xyz: [!str/index xyz] 
Index of xyz: -1 
 
 
  



 
144 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

 

!SYSENV – Return System Environment Values 
 
Most Operating Systems support a set of system environment variables.  Such as a ‘Path’.  
These vary by Operating System.  This command allows display of these, but they cannot be 
modified from here. 
 
Note: The variable name may be case insensitive or case sensitive, depending on Operating 
System. 
 

Argument 
 
One – The variable name. 
 

Switches 
 
/previous – Display the value from the previous stack level. 
 

Example 
 
) write Your Operating System Is : [!sysenv OS] 
Your Operating System Is : Windows_NT 
) write The value for the ‘junk’ setting is: [!sysenv junk] 
Error (10069) : System Environment Value for 'junk' not found. 
 
Note: Unlike the SYSENV command, the pseudomacro will throw a Class 1 exception if the key is 
not found. 

  



 
145 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!SYSPROP – Return System Property Values 
 
The CLI is written in the Java programming language.  Java maintains a set of system 
‘properties’, and this pseudomacro allows you to retrieve them.  You cannot alter them.  Also 
see the SYSPROP command. 
 
Note: The name may be case insensitive or case sensitive, depending on Operating System. 
 

Argument 
 
One – The property name. 
 

Switches 
 
None. 
 

Example 
 
) write Your Java Vendor Is : [!sysprop java.vendor] 
Your Java Vendor Is : Oracle Corporation 
)  

  



 
146 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!TAN – Return the Tangent function of a Floating Point number 
 
Returns the trigonometric function ‘Tangent’ for any number of degrees. 
 
See also the [!degrees] pseudomacro which will convert radians to degrees. 
 

Argument 
 
One required – A number of degrees. 
 

Switches 
 
None. 

  



 
147 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!TIME – Return the current system Time of day 
 
Returns the current system time using either the default format, or using one you provide via a 
switch. 
 
No arguments. 
 

Switches 
 
/format = Specifies a format to use for displaying the time.  This format must be in the same 

format as the Java java.text.SimpleDateFormat class definition.  This overrides the CLI 
default format.  See Section 4 on customization for a way to change the default time 
format. 

/tz= Specifies a timezone ID to use.  Must be from the set displayed using the TIME command’s 
/showalltimezones switch and is case sensitive.  May also be from any timezone aliases 
specified in the resource property file. 

 
Note: You may also include date fields in your format. 
 
Examples (note minimal uniqueness of switch in one): 
 
) write The current time is: [!time] 
The current time is: 22:23:12 
) write The time is now: [!time/format=”hh:mm:ss aa”] 
The time is now: 10:24:31 PM 
 
  



 
148 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

!VERSION – Returns the current version of the CLI 
 
Simply displays the version. 
 

Arguments 
 
None. 
 

Switches 
 
None. 
 

Example 
 
) wr Current CLI Rev is: [!ver] 
Current CLI Rev is: 0.05 
  



 
149 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Section 4 – Startup Customization 
 
When the CLI starts up, there are two ways you can have it initialize with some values other 
than the defaults.  One is with a ‘startup macro’, and the other is by providing your own 
‘CLI.properties’ file.  Or both. 
 
NOTE: These methods are only available in the paid package levels.  Specifically, the ‘startup 
macro’ is not available in the ‘Free’ version.  Only in the base paid level on up.  The 
‘CLI.properties’ method is only available in the ‘Commercial’ version on up. 
 

Startup Macro 
 
Specify the name of the macro on the startup line.  Either as the only argument, or as a value to 
the ‘-i’ switch (as in Input). 
 
Example using Windows, where the startup macro is a file named ‘startup.cli’: 
 
> java –jar CLI.jar startup.cli 
 
Or 
 
> java –jar CLI.jar –i startup.cli 
 
If the macro ends with the BYE command, the CLI will exit after execution.  Otherwise, it will 
run the macro, and then just drop into the usual user prompt. 
 
ANY commands can be run in this macro.  However it is not currently possible to pass any 
arguments to the macro at this time. 
 
Useful things to do in the macro might be: 
 
DIRECTORY command – Change your current working directory. 
SEARCHLIST command – Set a searchlist. 
PROMPT command – Set the CLI prompt. 
PREFIX command – Set the CLI prefix. 
 
Or any other environment settings. 
 
Or you can just use this capability to run CLI macros as batch jobs. 
  



 
150 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

CLI.properties 
 
The other startup customization can be done by specifying your own property file at startup.  
There is a default in the JAR file, but you can override it. 
 
NOTE: be very careful with this, as you can break things!  The default file is provided if you 
purchase the Commercial level package or above.  Also note that the default may change from 
version to version. 
 
Example file: 
 
# Property file used for various parameters for the CLI program 

# 

ResourceFile=CLI_Resources.properties 

Commands=CLI_Commands.properties 

Pseudomacros=CLI_Pseudomacros.properties 

searchlist=C:\\Users\\Dave_2\\Documents\\Dev 

directory=. 

cmdSeparator=; 

# Regular Expression (Regex) for input of date/time.  As with FILESTATUS time filters. 

DateTimeInputRegex=([0-9]{4})-([0-9]{1,2})-([0-9]{1,2})(:([0-9]{1,2}))?(:([0-9]{1,2}))?(:([0-

9]{1,2}))? 

# The fields represented by the regex groups in the above regex. 

DateTimeInputFields=y+M+d+H+m+s 

# Default data fields to display in the FILESTATUS command. 

filestatus_fields=name+type+size+tlm 

# 

# End 

# 

 

You specify your alternate version as startup using the ‘-env’ switch as follows: 
 
> java –jar CLI.jar –env startup.properties 
 
Value definitions (case matters!): 
 
ResourceFile – The name of a ‘resource bundle file’.  See Section 5.  This can only be changed in 

the Enterprise package level. 
Commands – The name of a command definition property file.  See Section 5.  This can only be 

changed in the Commercial package level. 
Pseudomacros – The name of a pseudomacro definition file.  See Section 5.  This can only be 

changed in the Commercial package level. 
searchlist – The SEARCHLIST value to use at startup. 
directory – The current working directory at startup.  Note ‘.’ Means whatever your CWD is 

when the java runtime is started. 
cmdSeparator – The character to use for separating multiple commands on a command line. 
  



 
151 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

DateTimeInputRegex and DateTimeInputFields – These together specify the format to use 
when inputting date and time stamps for commands that accept them, such as the 
FILESTATUS command’s date/time range filters.  A knowledge of Regular Expressions is 
helpful here, but simply, the ‘regex groups’ in parens correspond with the fields 
separated by plus signs in the field list.  Those fields, such as ‘M’, correspond to the Java 
language formatting fields.  Thus:  ‘y’ – year, ‘M’ month, ‘d’ – day of month, ‘H’ Hour of 
day 0-23, ‘m’ – minute of hour, ‘s’ – second of minute. In the above file for example, the 
first regex field ‘([0-9]{4})’ means “a group consisting of 4 characters in the range ‘0’ 
thru ‘9’” (4 digits), and it corresponds to the ‘y’ from the field definition.  Thus the entry 
must start with the form ‘yyyy’ or a 4 digit year. 

 
So the above will recognize:  2015-09-13:11:00:00 – For 11 AM on September 13th, 
2015.  Note the hyphens and colons also must match, as hyphens and colons. 

 
The ‘?’ symbols mean that groups are optional.  This allows, in the above default, for 
you to leave off the time of day fields.  They would be set to zero if not entered by the 
user.  As defined here, either the entire set of time of day groups can be left off, or an 
individual group, in which case if you had only 2 time groups entered, they would be 
hour and minute (seconds would be assumed to be zero).  With one time group entered, 
it would be assumed to be hours. 
 
Experimentation is likely needed.  



 
152 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Section 5 – Advanced Customization 
 
In the Commercial and Enterprise level packages, you can extend the CLI by adding your own 
commands and pseudomacros!  You can also change the text used by the CLI, for example you 
could change the names of commands and pseudomacros, or error messages or other 
displayed text.  You might want to do this just for your own preference, or for 
internationalization specific to a language.  There is virtually no hard-coded text in the CLI. 
 
As mentioned back in Section 1, the CLI is written in Java®.  As such, it has some powerful 
capabilities, such as being able to dynamically load compiled code at runtime.  This allows all of 
the code for commands and pseudomacros to be loaded based on parameters.  Each command 
or pseudomacro is represented by a Java ‘class’. 
 
If you purchase the Commercial or Enterprise package levels of the CLI, you will be provided 
with some base Java code and examples that you can ‘extend’ to create your own commands or 
pseudomacros.  You will also get the raw binaries of other code so you can build your own ‘JAR’ 
file. 
 
To override the defaults built into the delivered JAR file, you use three of the fields found in the 
‘CLI.properties’ file discussed in Section 4.  Specifically: ‘ResourceFile’, ‘Commands’, and 
‘Pseudomacros’.   
 
 

 

 

  



 
153 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Index 
 

# 

# · 41 

/ 

/format= Switch · 30 

? 

? – Alternate for HELP Command · 24 

[ 

[!else] · 20, 21 
[!end] · 20, 21 
[!equal] · 20 

A 

ABORT Action · 15 
Absolute Value · 88, 103 
Addition · 89, 104 
Angle brackets · 16 
Angle Brackets · 16 
Arguments · 10 
ASCII · 76 

B 

BASENAMEPART Pseudomacro · 72 
BYE – Exiting the CLI · 25 

C 

CD · 33 
CEILING Pseudomacro · 73 
CHARACTER Pseudomacro · 76 
Class 1 · 15 
Class 2 · 15 
CLASS1 · 14, 26 
CLASS1 Pseudomacro · 74 
CLASS2 · 14, 27 
CLASS2 Pseudomacro · 75 
CLI.properties · 150 



 
154 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Command Line Interpreter · 8 
Command Line Structure · 23 
Command Shortcuts · 16 
Comments · 10 
Conditional Control Pseudomacros · 71 
Conditional Example · 84, 125, 135, 141 
Conditional execution · 82, 83, 84, 91, 92, 93, 95, 97, 100, 106, 107, 108, 109, 110, 113, 125, 136, 137, 139, 140, 141 
Conditional Execution · 20 
COPY · 28 
COS Pseudomacro · 77 
Cosine function · 77 
COUNT Pseudomacro · 78 
CREATE · 29 
Create a file or directory · 29 
Current version · 148 
Current Working Directory · 81 

D 

DATE · 30 
Date and Time formatting · 30, 79 
Date/Time and Size Range Filters · 37 
DEBUG · 31 
DEGREES Pseudomacro · 80 
DELETE · 32 
Delete files or directories · 32 
Directory · 14 
DIRECTORY · 33 
DIRECTORY Pseudomacro · 81 
Division · 90, 105 

E 

Echo text · 70 
ELSE Control Pseudomacro · 82 
END Conditional Pseudomacro · 83 
END Control Pseudomacro · 83 
Environment · 14 
Environment Stack · 14, 45, 57, 58, 119 
EQUAL Conditional Pseudomacro · 84 
Equal to · 84, 91, 106, 135 
ERROR Action · 15 
Error Code Handling · 117, 124 
Error Handling · 15 
Error Message Codes · 49 
ESCAPE character · 10 
Exception Handling · 118 
EXECUTE · 34 
Exiting the CLI · 25 
EXPAND Pseudomacro · 85 
EXTENSIONPART Pseudomacro · 87 



 
155 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

F 

FABS Pseudomacro · 88 
FADD Pseudomacro · 89 
FDIVIDE Pseudomacro · 90 
FEQUAL Conditional Pseucomacro · 91 
FGE Conditional Pseudomacro · 92 
FGT Conditional Pseudomacro · 93 
File Expansion · 13 
Filename paths and templates · 40 
FILENAMES Pseudomacro · 94 
FILESTATUS · 36 
Filters · 37 
FLE Conditional Pseudomacro · 95 
Floating Point Variables · 42 
FLOOR Pseudomacro · 96 
FLT Conditional Pseudomacro · 97 
FMULTIPLY Pseudomacro · 98 
FNAMEPART Pseudomacro · 99 
FNEQUAL Conditional Pseudomacro · 100 
FSUBTRACT Pseudomacro · 101 
FVAR · 14, 42 
FVAR Pseudomacro · 102 

G 

Greater Than · 93, 108, 137 
Greater than or Equal to · 92 
Greater Than or Equal to · 136 
Greater Than or Equal To · 107 

H 

Hash mark - # · 41 
HELP · 24, 43 
Hidden Files · 37 

I 

IABS Pseudomacro · 103 
IADD Pseudomacro · 104 
IDIVIDE Pseudomacro · 105 
IEQUAL Conditional Pseudomacro · 106 
IGE Conditional Pseudomacro · 107 
IGNORE Action · 15 
IGT Conditional Pseudomacro · 108 
ILE Conditional Pseudomacro · 109 
ILT Conditional Pseudomacro · 110 
IMOD Pseudomacro · 111 
IMULTIPLY Pseudomacro · 112 
Index · 153 
INEQUAL Conditional Pseudomacro · 113 
INFO Pseudomacro · 115 



 
156 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Input 
READ Pseudomacro · 131 

ISUBTRACT Pseudomacro · 114 
IVAR · 14, 44 
IVAR Pseudomacro · 116 

J 

JAR · 9 
Java · 9 
Java System Properties · 145 
java.text.SimpleDateFormat · 30 

L 

LASTERRORCODE Pseudomacro · 117 
LASTEXCEPTIONTYPE Pseudomacro · 118 
Less Than · 97, 110, 140 
Less than or Equal to · 95 
Less Than or Equal to · 139 
Less Than or Equal To · 109 
LEVEL · 45 
LEVEL Pseudomacro · 119 
List files in the file system · 36 
LISTFILE · 14, 46 
LISTFILE Environment Setting · 120 
LISTFILE Pseudomacro · 120 
Log Base 10 · 123 
LOG10 Pseudomacro · 123 
LOGFILE · 14, 48 
LOGFILE Pseudomacro · 121 
Logging · 48 
LOGN Pseudomacro · 122 

M 

Macro Example · 84, 125, 135, 141 
Macros · 18 

Arguments · 18 
MESSAGE · 49 
Message Codes · 49 
MESSAGE Pseudomacro · 124 
Minimal Uniqueness · 11 
Modulo Function · 111 
MOVE · 50 
Move Files · 50 
Multiplication · 98, 112 

N 

Natural Log · 122 
NEQUAL Conditional Pseudomacro · 125 
Not Equal to · 100, 113, 141 



 
157 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

P 

Parentheses · 16, 17 
PARENTPART Pseudomacro · 126 
PATHNAME · 53 
PATHNAME Pseudomacro · 127 
Pi · 80, 128 
PI Pseudomacro · 128 
PID · 54 
PID Pseudomacro · 129 
POP · 58 
Prefix · 11, 14 
PREFIX · 55 
Process ID · 54, 129 
Prompt · 11, 14 
PROMPTCOMMANDS · 56 
Pseudomacro Categories · 71 
Pseudomacros · 13 

Block Pseudomacros · 21 
Test Pseudomacros · 20 

PUSH · 57 

R 

Random Numbers · 130 
RANDOM Pseudomacro · 130 
READ Pseudomacro · 131 
Remainder function · 111 
RENAME · 59 
Rename a file or directory · 59 
RETURN · 18, 60 
ROOTPART Pseudomacro · 132 
ROUND Pseudomacro · 133 
Run an external program · 34 

S 

Searchlist · 14, 61, 134 
SEARCHLIST · 61 
SEARCHLIST Pseudomacro · 134 
Section 1 · 8 
Section 2 – The Commands · 23 
Section 3 – Pseudomacros · 71 
Section 4 – Startup Customization · 149 
Section 5 – Advanced Customization · 152 
SEQUAL Pseucomacro · 135 
SGE Conditional Pseudomacro · 136 
SGT Conditional Pseudomacro · 137 
SIN Pseudomacro · 138 
Sine function · 138 
SLE Conditonal Pseudomacro · 139 
SLT Conditonal Pseudomacro · 140 
SNEQUAL Conditional Pseudomacro · 141 
Sort Switch · 39 
Stack · 45 



 
158 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

Startup Macro · 151 
stdout · 46 
String · 14 
STRING · 62 
String functions · 142 
STRING Pseudomacro · 142 
String Variables · 62 
Substrings · 142 
Subtraction · 101, 114 
Switches · 12 
SYSENV · 63 
SYSENV Pseucomacro · 144 
SYSPROP · 65 
SYSPROP Pseudomacro · 145 
System Environment Values · 63, 144 
System Properties · 65 
System Property Values · 145 
System Time · 147 
System.out · 46 

T 

TAN Pseudomacro · 146 
Tangent function · 146 
Text Entry · 10 
Time and Date formatting · 66 
TIME Pseudomacro · 147 
TRACE · 67 
Trace Mode · 67 
TYPE · 68 

U 

Unicode · 76 
User Environment · 14 
User Input · 131 
Using the CLI · 8 

V 

Variables 
Floating Point · 42, 102 
Integer · 44, 116 
String · 62, 142 

VERSION · 69 
VERSION Pseudomacro · 148 

W 

WARNING Action · 15 
Wildcards · 41 
WRITE · 70 



 
159 

November 3, 2015 
 

Copyright © 2015 – Hubbard Software CLI Manual (1.00) 

X 

XEQ · 34 

Π 

π · 128 

 


